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Abstract

Causal knowledge is critical for strategic and organizational decision making. By contrast,

standard machine learning approaches remain purely correlational and prediction-based, ren-

dering them unsuitable for addressing a wide variety of managerial decision problems. Taking

a mixed-methods approach, which relies on multiple sources, including semi-structured in-

terviews with data scientists and decision makers, as well as quantitative survey data, this

study argues that causality is a critical boundary condition for the application of machine

learning in a business analytical context. It highlights the crucial role of theory in causal

inference and offers a new perspective on human-machine interaction for data-augmented

decision making.
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INTRODUCTION

The age of big data has given rise to data science and machine learning as a promising tools

for organizational and strategic decision-making in which managers rely less on intuition

and more on data (Brynjolfsson and McElheran, 2016). Machine learning technologies are

seen as workhorses in many organizations (Agrawal et al., 2018), significantly driving firm

value and performance (Rahmati et al., 2020; Mithas et al., 2011). In many industries, data-

driven strategies have become instrumental to achieving competitive advantage (LaValle

et al., 2011; Brynjolfsson et al., 2011; Mithas et al., 2011; Bloom et al., 2012; Brynjolfsson

and McElheran, 2019; Tidhar and Eisenhardt, 2020). For this reason, some authors have

classified data science and machine learning as newly emerging general purpose technologies

(Goldfarb et al., 2020).

Machine learning thereby commonly refers to a set of statistical algorithms that are de-

signed to efficiently detect patterns in high-dimensional data and fit functional relationships

between variables with a great degree of accuracy (Hastie et al., 2009; Shrestha et al., 2021).

These algorithms underpin modern approaches to business analytics and artificial intelligence

(AI). In recent years, deep learning algorithms have been applied to a variety of different

decision-making problems (Blei and Smyth, 2017; Athey and Imbens, 2019; Choudhury et al.,

2020; Tidhar and Eisenhardt, 2020). Because of their superior forecasting abilities, compared

to traditional statistical and econometric techniques, machine learning methods have been

called prediction machines (Agrawal, 2018), a term that captures well their main purpose

of predicting the state of an output variable based on complex correlational patterns in the

input data (the so-called feature space).

At the same time, however, the label prediction machines also illustrates a potential

boundary condition for using machine learning in a business analytical context. Organi-

zational and strategic decision-making involves deliberate actions and interventions in the

environment (both internal and external) to achieve a desired result in line with organiza-
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tional goals (Cyert et al., 1956; Simon, 1964; Christensen et al., 2016). Assessing the likely

impact of these interventions ex-ante – a capacity that is crucial for optimal decision-making

– requires causal knowledge (Bertsimas and Kallus, 2016; Athey, 2017; Bareinboim et al.,

2020). In other words, to generate and evaluate alternative strategic actions in terms of

their effect on central business metrics, managers need to understand the causal mechanisms

underlying a decision situation (Mintzberg et al., 1976). By contrast, most commonly used

machine learning algorithms, including decision trees, support-vector machines, and deep

learning, remain purely correlational and are thus only able to make accurate predictions in

a static domain (Pearl, 2019). Once perturbations are introduced as a result of a deliberate

managerial action, their superior forecasting ability breaks down.

Therefore the question arises to what extent machine learning and the data-scientific

approaches that build on it are really useful for improving business decision-making? In

this paper, we ask whether there is a mismatch between the managerial problems that

organizations try to tackle with data analytics and the methods they use in relation to the

challenge of causal inference. If so, we would further like to know whether practitioners

are aware of this gap and what actions they take to overcome it. Toward this end, we

employ a mixed methods research design in which we combine qualitative interviews with a

quantitative survey of practitioners, as well as a multitude of other data sources including

online resources, educational material, blog posts and software packages originating from the

data science community. The interviews we conducted and auxiliary data sources thereby

provide us with rich, contextual insights about the mechanisms underlying modern business

analytics in contemporary organizations (Bettis et al., 2014), while the survey study allows

us to solicit information from a broader sample in a more systematic way (De Leeuw et al.,

2008).

The results indicate an ongoing shift in the community of practitioners towards the

growing application of causal data science methods for business decision-making. Traditional

correlation-based machine learning approaches are increasingly perceived as unsuitable for
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informing a wide variety of practical decision problems. Moving to causal methods, including

experimental and observational approaches, by contrast, offers the prospects of increasing

the reliability and robustness of obtained data analytic insights. Moreover, we find that our

respondents plan to invest more into their causal inference capabilities in the coming years.

Several key firms, particularly in the technology sector, who have started to significantly

increase their efforts in this direction demonstrate that the topic of causality will grow in

importance for the industry as a whole in the future. Yet moving towards this new paradigm

poses practical as well as theoretical challenges that will be identified in the course of this

paper.

Our study contributes to the management literature by clarifying the epistemological

foundation for causal learning in an organizational decision-making context and delineating

theoretical impediments to the success of standard machine learning approaches in business

analytics (Pearl, 2019). We discuss the crucial role of ex-ante domain knowledge that cannot

be obtained from pure observation alone for inferring causality (Bareinboim et al., 2020). In

doing so, we connect to the newly emerging theory-based view of the firm (Camuffo et al.,

2020; Felin and Zenger, 2009, 2017; Felin et al., 2020a,b) and demonstrate that theory is an

essential input to data-augmented decision-making. At the same time, we show how the liter-

ature on the topic of causal inference in machine learning and AI can significantly contribute

to the inferential power of managerial theorizing and support users in mire effectively inte-

grating data science into the strategy formulation and decision-making process. Finally, we

discuss the practical implications of our study concerning the development of causal learning

as an important organizational capability.

THEORY

Causal Knowledge in Strategic Management

Causal knowledge involves the awareness and understanding of cause and effect relationships

in the world. It is one of the most important components of human cognition, inseparable
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from our thought and essential to our survival (Pearl and Mackenzie, 2018; Waldmann,

1996). It enables an actor to predict the outcome of an action and the mechanism it is

transmitted by, allowing her to deliberately change the state of the environment with selective

interventions (Pearl and Mackenzie, 2018). According to Woodward (2003), causal knowledge

can be defined as ”knowledge that is useful for a very specific kind of prediction problem:

the problem an actor faces when she must predict what would happen if she or some other

agent were to act in a certain way on the basis of observations of situations in which she or

the other agent have not (yet) acted” (p. 32).1

Such kind of (causal) prediction problems are ubiquitous in the field of management.

Marketing executives might try to predict whether ads on a mobile or desktop version of a

social network will lead to higher click-through rates (Lu and Du, 2020). Human resource

managers might want to know whether increased teleworking would exert a positive influence

on employee productivity and well-being (Vega et al., 2015). Founders of a start-up might

wonder whether certain communicative signals in a crowdfunding campaign will result in

better funding outcomes (Kaminski and Hopp, 2019). “What if” questions of this kind typ-

ically arise in the context of strategic business problems. Causal knowledge thus constitutes

an important parameter in taking central management decisions (Felin and Zenger, 2009).

Among organizational decisions, strategic decisions are generally identified as those man-

agerial choices that are important in terms of the resources committed, the actions taken,

and the precedents set (Shrivastava and Grant, 1985; Mintzberg et al., 1976; Eisenhardt and

Zbaracki, 1992; Mitchell et al., 2011). They define the direction of the organization (Eisen-

hardt and Zbaracki, 1992) and thereby have long-term effect on the firm’s administration,

structure, and performance (Shrivastava and Grant, 1985; Shivakumar, 2014). Strategic

decisions are particularly difficult to make, as the problems they must solve and the ques-

tions they must answer tend to be complex, novel, and incompletely understood, without

clearly defined routines and rules to approach them (Shivakumar, 2014; Shrivastava and
1Woodward is a representative of an interventionist theory of causation within the philosophy of science

(Menzies, 2006)
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Grant, 1985). Thus they involve considerable uncertainty for decision-makers (Schwenk,

1984). Cyert et al. (1956) observe that ”non-repetitive [problems] [...] involving basic long-

range questions about the whole strategy of the firm or some part of it, initially [arise]

in a highly unstructured form” (p. 238) and demand very particular decision-making pro-

cesses. Organizational success, performance and efficiency thus depend on organizational

decision-making structures (Simon, 1964) and on the processes underlying managers’ strate-

gic choices (Mitchell et al., 2011), which, as the following discussion shows, are based largely

on causal knowledge. Adopting Mintzberg et al. (1976)’s descriptive approach to understand-

ing and defining managers’ strategic decision activities, this process can best be conceptu-

alized as containing three phases of decision-making. In the first phase, managers recognize

a performance-objective gap in the data and thoroughly define the strategic problem. In

the second phase, managers identify and design alternative actions to solve the problem. In

the third phase, managers select the most feasible solutions and evaluate them in relation to

organizational goals to make a final choice.

To fully identify the strategic problem and define a starting point for the process of

solving it, ”management seeks to comprehend the evoking stimuli and determine cause-

effect relationships for the decision situation” (Mintzberg et al., 1976, p. 253). Specifying the

causal structures underlying a complex problem facilitates problem formulation (Baer et al.,

2013) and aids managers in identifying and defining important variables and objectives of

the decision task (Maule et al., 2003). Similarly, the subsequent generation and evaluation

of alternative actions requires the decision-maker to process causal assumptions in order

to imagine and compare different action scenarios (Pearl and Mackenzie, 2018). In their

seminal work, Cyert et al. (1956) stress that the unstructured and complex nature of non-

programmed, strategic decisions requires a very particular search process. Alternative actions

and the consequences attached to them, are not given but must be determined; this search

for cause and effect relationships is an integral part of all stages of the strategic decision-

making process (Cyert et al., 1956). Indeed, Mintzberg et al. (1976) emphasize that ”the
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largest share of manhours in the decision process […] [is] devoted to gathering information to

determine the consequences of alternatives” (p. 262). Building upon this finding, Nickerson

and Zenger (2004) posit that to identify valuable solutions to complex problems and generate

knowledge, managers need an implicit theory of the problem space to cognitively evaluate

probable effects of choices and determine solution performance.

Such cognitive evaluation can be realized by agents forming and consulting mental im-

ages of their information worlds and the problem space (Walsh, 1995; Gavetti and Levinthal,

2000; Pearl and Mackenzie, 2018). The literature on managerial cognition finds that man-

agers build causal mental maps to support their decision-making efforts (Gary and Wood,

2011; Maule et al., 2003; Hodgkinson et al., 1999). These mental models are generally defined

as graphical representations of an individual’s causal beliefs in a certain domain (Axelrod,

1976). Cognitive maps thereby act as simplified working models that aid decision-makers in

overcoming their limited processing capacity when facing complex strategic problems (Walsh,

1995; Hodgkinson et al., 1999; Gavetti and Levinthal, 2000). Not surprisingly, managers’

cognition is thus found to be a key determinant of managerial choice and action along the

entire decision-making process (Stubbart, 1989; Walsh, 1995). Emphasizing the causal na-

ture of cognitive maps, the literature asserts that an understanding of cause and effect in the

relevant business context allows decision-makers to focus on strategic actions (Hodgkinson

et al., 1999), speeds problem-solving (Walsh, 1995) and increases the quality of decision mak-

ing (Waldmann, 1996; Gary and Wood, 2011). Beliefs about causal structures thereby assist

decision-makers in detecting covariates and in distinguishing real from spurious correlations

(Vera-Muñoz et al., 2007; Waldmann, 1996). Gary and Wood (2011) assert that causal mod-

els guide managers in deciding when and how to intervene in their business by providing

them with a tool to infer the effect of alternative strategic actions. The authors’ analysis

shows that ”accurate mental models about causal relationships in the business environment

result in superior performance outcomes” (ibid., p. 570) and that managerial cognition is

a significant driver of heterogeneity in firm performance. Similarly, Gavetti and Levinthal
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(2000) conclude that ”even simple models of the world have a tremendous potential to guide

search processes” (ibid. p. 135). Moreover, the literature on business models provides fur-

ther evidence on causal mapping in the business context. Several scholars conceptualizes the

business model itself as a system with underlying cause and effect relationships that define

how the firm can achieve its long-run objectives by realizing concrete strategies (Baden-

Fuller and Mangematin, 2013; Furnari, 2015; Vera-Muñoz et al., 2007). ”The business model

[...] should be a stripped-down characterization that captures the essence of the cause–effect

relationships between customers, the organization and money” (Baden-Fuller and Mange-

matin, 2013, p. 419). As a cognitive instrument it thus provides a reference frame of

causal relationships to address strategic management questions and structure organizational

decision-making (Simon, 1964).

Data Science and Machine Learning in Management

The emergence of data-augmented decision-making, fueled by new machine learning tech-

nologies and opportunities for data collection, has changed the way managers make decisions

– relying more on data and less on intuition (Brynjolfsson and McElheran, 2016). Conse-

quently, the topics of business intelligence and business analytics are receiving increasing

interest from researchers, job-market candidates and practitioners alike (Chen et al., 2012;

Lycett, 2013; Sharma et al., 2014; Athey and Luca, 2019) and data science has assumed

a central role in managerial decision-making. There is abundant evidence for a positive

relationship between data-augmented decisions, enhanced productivity, and the increase of

intangible firm value (Bharadwaj et al., 1999; Brynjolfsson et al., 2011; Mithas et al., 2011;

Bloom et al., 2012; Brynjolfsson and McElheran, 2019; Rahmati et al., 2020). As LaValle

et al. (2011, p2̇2) find, “the correlation between performance and analytics-driven manage-

ment has important implications to organizations, whether they are seeking growth, efficiency

or competitive differentiation.”

Machine learning evolved primarily as a tool for prediction problems, that is, problems
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that use an input to predict the outcome through observed associations or relationships

(Davenport and Harris, 2009; Varian, 2014, 2016; Agrawal et al., 2018; Iansiti and Lakhani,

2020). The promise of big data in organizations today, therefore, essentially lies in sig-

nificantly advanced pattern detection abilities derived from gradually improving machine

learning models and technologies (Bajari et al., 2018). Consequently, so-called prediction

machines (Agrawal et al., 2018) – systems using these models and technologies – are seen

as workhorses in many companies, providing continuously better and cheaper forecasts to

decision-makers.

Much of this expansion in data-augmented decision-making derives from the success of

deep learning architectures that map from observable inputs to outputs via multiple layers

of high-dimensional data. These constitute effective tools for unstructured predictions and

can be employed to solve complex classification problems (Athey, 2018; Blei and Smyth,

2017; Mullainathan and Spiess, 2017; Athey and Imbens, 2019; Choudhury et al., 2020)

in contexts ranging from predicting customer churn (Agrawal et al., 2018; Ascarza, 2018)

to making economic predictions with satellite images (Henderson et al., 2012; Donaldson

and Storeygard, 2016; Athey, 2018), or supporting hiring decisions (Chalfin et al., 2016).

In a strategic context, machine learning systems have shown to be capable of finding the

optimal revenue-model fit (Tidhar and Eisenhardt, 2020), and, as the reinforcement learning

algorithm of Google DeepMind’s AlphaStar exemplifies, are able to map out and predict

strategies in a complex gaming simulation (Vinyals et al., 2019).

As Agrawal et al. (2019, 31) remark, however, ”machine learning does not represent an

increase in artificial general intelligence of the kind that could substitute machines for all as-

pects of human cognition, but rather one particular aspect of intelligence: prediction.” While

modern decision-aiding systems amount to “an exploratory tool to discover robust patterns

in quantitative data” (Choudhury et al., 2020, p. 1), they are not capable of deriving causal

effects: “First, the goal [of machine learning] is predictive power, rather than estimation of

a particular structural or causal parameter” (Athey and Imbens, 2019, p. 7).
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In the context of the preceding theoretical discussion, this point implies an important

mismatch between machine learning capabilities and the analytical requirements of (some

of) the problems they address (Bertsimas and Kallus, 2016). Pattern discovery by itself

has rarely been shown to be relevant to strategic management questions. Classical machine

learning models are thus incapable of providing the causal knowledge that is required by

strategic decision-making processes. As Fedyk (2016, p. 3) points out, the business problems

addressed with classical machine learning, should (only) be those that ”(1) require prediction

rather than causal inference; and (2) are sufficiently self-contained, or relatively insulated

from outside influences.” Yet, Christensen et al. (2016, p. 4) assert that “though it’s no sur-

prise that correlation isn’t causality, we suspect that most managers have grown comfortable

basing decisions on correlations.”

Due to this limitation in explaining causal relationships, classical machine learning is

only of limited use for most managerial decision tasks. Additionally, the fact that outcomes

of deep learning models cannot be easily interpreted because of the many feature layers

involved in a decision (Rai, 2020), further complicates the use of prediction models for

strategic business questions. As Athey (2017) points out, gaps yet persist between making

a prediction and making a decision. Most existing machine learning research focuses on

the relationship between data and prediction, while the relationship between prediction and

decision is still underdeveloped. Figure 1 provides an overview of commonly used data

analysis and estimation algorithms, and shows how they map across the space of prediction-

based methods, observational causal inference techniques, and experimental approaches.

To optimize data-augmented decision-making in organizations, assumptions and limita-

tions of prediction methods, especially with respect to the questions that can be answered,

need to be understood and considered in the decision process (Athey, 2017). As Kleinberg

et al. (2017, p. 40) have shown, “being clear about how predictions translate to decisions can

substantially influence how the prediction function is evaluated.” Business problems such

as pricing or inventory management that are typically addressed with prediction models,
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FIGURE 1: Classification of popular data analysis algorithms.
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Note: Examples of popular data analysis algorithms in statistics and econometrics, as well as machine
learning and artificial intelligence, classified according to prediction and causal inference methods. Causal
inference methods are further differentiated according to observational (based on ex-post observed data) and
experimental approaches.

require more robust causal assumptions to guide optimal decision outcomes (Lycett, 2013;

Bertsimas and Kallus, 2016). Prediction systems lack ”the knowledge of causal relationships

among the various variables, relying solely on past data to make decisions. Thus, [standard

machine learning] cannot foresee future consequences as humans can” (Balasubramanian

et al., 2020, p. 14). Hence, while predictive approaches often perform well in business con-

texts, optimal decisions cannot be identified without a sound assessment of causal effects:

“When we have a good understanding of where our data comes from, what has influenced

[that] data, the causal relation between [input and output data], we understand where, how

and why something happened” (Asatiani et al., 2020, p. 270).

Shiffrin (2016, p. 7308) notes that big data by itself is not very helpful to organizations,

as the detection of patterns is only the first step towards causal inference. The author argues

that “[e]xplaining those patterns (possibly with the help of experimental manipulations of

some variables coupled with additional data collection), and then using the patterns and
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explanations for a variety of purposes“, such as strategic decision-making, are essential steps

to derive value from organizational data. The field of causality thus presents a promising

future path for business strategy, intimately connected with developments in statistics, social

science, and computer science, and well suited for observational data and experiments (Blei

and Smyth, 2017). Shifting attention to causal inference in data science and machine learning

therefore appears as an inevitable next step. ”[D]iscovering causal relations means acquiring

robust knowledge that holds beyond the support of an observed data distribution [...], and

it extends to situations involving forms of reasoning” (Schölkopf et al., 2021, p. 2).

Causal methods such as experimentation are already seen to significantly advance busi-

nesses’ understanding of the “causal relationships between human behavior and economic

value,” which can provide valuable new insights into decision-making (Gillon et al., 2012, p.

290) and entrepreneurial strategy (Camuffo et al., 2020; Koning et al., 2020; Agrawal et al.,

2021). Accordingly, Hartford et al. (2016, p. 20) argue more generally that “the next gener-

ation of problems in [machine learning] involve moving from raw prediction tasks into more

complex decision-making domains” which require “knowledge of the true structure of the pro-

cesses that we are modeling and, hence, causal inference.“ Illustrated by Figure 1, a growing

array of not only experimental, but also observational causal inference methods in the field

of machine learning enable such transition and provide the causal knowledge necessary to

fully address strategic business questions. As Malone (2018, p. 258) proposes “strategy com-

binators” that merge human reasoning with machine learning, “could rapidly generate and

evaluate various strategic possibilities”. We hence propose that big data (George et al., 2014)

needs to be complemented with smart causal models to advance data-augmented strategic

decision-making in organizations.

The Epistemological Challenge of Causal Inference

The task of causal inference, to predict the outcome of an action (Woodward, 2003), is

challenging. To carry it out, the analyst cannot simply rely on passive observations of
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the environment, as her action exerts a force on that environment and thereby changes it.

The chain of events that would have prevailed without the action is altered, so a prediction

derived from passive observation carries little information about the events that will transpire

afterward. Formally, this idea can be best illustrated with the help of a causal diagram (Pearl,

1995; Durand and Vaara, 2009). Figure 2a shows a network of three variables, X, Y , and Z,

depicted as nodes connected by edges. These edges are directed, with directions indicated

by arrowheads that specify cause-and-effect relationships between the nodes.

FIGURE 2: (a) Directed acyclic graph corresponding to the SCM in Equation (1). (b)
Post-intervention graph of (a) for do(X = x0), corresponding to the SCM in Equation (2).

X Y

Z

(a)

X Y

Z

x0

(b)

The causal diagram in Figure 2a is a representation of the following underlying structural

causal model (SCM; Pearl, 2009):

Z ← f1(ε1), X ← f2(Z, ε2), Y ← f3(X,Z, ε3) (1)

Here, X is determined by a function f2 that takes Z as an argument. The variable Z thus

has a direct causal effect on X. Causal relationships are generally assumed to be asymmetric

(Cartwright, 2007), captured by the assignment operator ←, which states that while Z is

a cause of X, the reverse is not true.2 The model contains a set of exogenous background

factors, εif , that are considered to be determined outside of the model and are thus not

further specified. For ease of notation, these background factors are not depicted in the

causal diagram. Nonetheless, they exert an influence on the endogenous variables in the
2Equations would not be able to capture this asymmetry, since X = Z is equivalent to Z = X.
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model. Because they are unobserved from the standpoint of the analyst, their presence

renders the model stochastic with a probability distribution P (ε) over the set of endogenous

variables.3

As a graphical representation of the structural causal model, the causal diagram only

relies on the qualitative causal dependencies between nodes. No assumptions about the

exact form of the functional relationships, fi, as well as the distribution of background

factors, P (ε), are needed (Bareinboim and Pearl, 2016). The only requirement is that causal

relationships must be acyclic (Pearl, 2009). That means that by tracing paths between nodes

following the directed edges in the diagram (such as, e.g., Z ← X ← Y in Figure 2a), it

should not be possible to arrive at a node that has already been visited before on the same

path. Hence, feedback loops such as A ← B ← C ← A are ruled out, a stipulation that

captures the intuitive notion that a variable cannot be a cause of itself.4 Due to this property

of acyclicity, causal diagrams are also referred to as directed acyclic graphs (DAGs) in the

literature (Pearl, 1988).

Equipped with the notion of structural causal models, actions can now be defined as

interventions on variables in the model (Haavelmo, 1943; Strotz and Wold, 1960). For

example, intervening on X in SCM (1) amounts to deleting the function f2(·), which normally

assigns values to X, and setting X to a constant value x0:

Z ← f1(ε1), X ← x0, Y ← f3(X,Z, ε3) (2)

This operation is denoted by a special operator called the do-operator: do(X = x0). Fol-

lowing this notation, the goal of causal inference is to assess the quantitative effect of such

an intervention on other variables of interest in the model. If Y is the outcome variable

under study, the target quantity becomes P (y|do(X = x0)); in words: the probability of Y ,
3This notion is analogous to error variables in standard statistical regression theory. It is important to

note, however, that background factors have a causal interpretation and do not simply reflect a deviation
from a conditional mean function.

4Acyclicity only rules out instantaneous feedback loops. Dynamic relationships such as At → A(t+1) →
A(t+2) → · · · are permissible.
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given that X has been set to x0 (Pearl, 2009, def. 3.2.1). Once this probability distribution

is known, other potential target quantities, such as average or quantile treatment effects

(Heckman and Vytlacil, 2007), can easily be derived from it.

Interventions can also be illustrated graphically in a DAG. Figure 2b depicts the postin-

tervention situation corresponding to Model 2, in which all the incoming arrows pointing

into X are deleted and replaced by a single intervention node x0. The graphical operation

of removing arrows from the graph highlights the fact that an intervention eliminates all

the causal relationships that usually exert an influence on X in the naturally occurring data

generating process (DGP; Hünermund and Bareinboim, 2019). This change of the DGP as a

result of the intervention implies, however, that the post-intervention distribution P (y|do(x))

is not readily observable from the pre-intervention state. This disparity is described as the

difference between seeing and doing in the literature, which constitutes a formal epistemolog-

ical hierarchy, also known as the ladder of causation (Pearl and Mackenzie, 2018; Bareinboim

et al., 2020).5,

6

Nevertheless, under certain circumstances, P (y|do(x)) might be transferable into an

equivalent expression that can be computed from pre-intervention information. For the

graph in Figure 2a, it can be shown that, based on a powerful causal inference engine called
5The hierarchy states that information at one layer (seeing) almost always (in a measure-theoretic sense)

underdetermines information at higher layers (doing). This difference is conceptually related to the fun-
damental problem of causal inference, as formulated by Holland (1986). Additionally, the hierarchy also
contains a third layer (imagining), which relates to counterfactual reasoning that is enabled by an SCM. For
the sake of brevity, we focus only on the step between the first and second layer of the hierarchy since the
challenges of obtaining causal knowledge are already introduced there.

6Not every organizational decision requires causal knowledge in the form of P (y|do(x)). In many situ-
ations, decision-making can be improved simply based on passive observations of the DGP, such as, e.g.,
accurate forecasts of demand Y given product characteristics X (Agrawal et al., 2018). However, decisions
based on associational knowledge P (y|x) need to rest outside the system of variables {X,Y, Z} under inves-
tigation and cannot intervene in it. An example here would be the decision to optimally allocate storage
capacity C based on seasonal demand patterns Y . If managers want to induce change in the system, e.g.,
increase demand by adjusting the characteristics of the product portfolio, optimal decision-making requires
predicting the effect of an action, do(x), and therefore causal knowledge.
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the do-calculus (Pearl, 2009), the post-intervention distribution is expressible as:

P (y|do(x)) =
∑
z

P (y|x, z)P (z), (3)

where the right-hand side stands for the conditional probability of Y given X and Z, and

integrating over all values of Z. Interestingly, while the left-hand side expression contains

a do-operator, and thus relies on post-intervention information, this is not the case for the

right-hand side. The expression on the right is comprised only of standard probability objects

that can be estimated from the pre-intervention distribution of the variables in the model,

P (Y,X,Z). The equivalence in (3) therefore solves the identification problem of causal infer-

ence (Koopmans, 1949; Pearl, 2009), since it allows the analyst to estimate post-intervention

distributions purely based on passive pre-intervention observations without manipulating the

treatment variable X directly (so-called observational causal inference).

It is important to note that the theoretical justification for the mapping in (3) comes

from the structural causal model and is only valid under certain conditions. In Figure 2a,

for example, no influence factors other than Z jointly affect X and Y , so assessing the

conditional distribution Y given X for each value of Z separately, i.e., P (y|x), eliminates all

spurious influence factors from the relationship. A corollary of the fact that the equivalence

in (3) can only be established based on the SCM, however, is that causal effects are generally

not estimable without a causal model. In fact, model-free causal inference is a theoretical

impossibility. Solving the identification problem always requires ex-ante causal assumptions

and can thus not be done in a purely data-driven fashion (Bareinboim et al., 2020).

Experimentally manipulating a variable and measuring the effect on an outcome, e.g., in

a randomized control trial (RCT) or A/B test (Thomke, 1998, 2020), in principle renders

P (y|do(x)) directly observable. However, the capacity to carry out experimental studies

does not alleviate the need for a causal model (Deaton and Cartwright, 2018). Experiments

are necessarily run at a specific point in time and within a particular population (e.g., in a
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laboratory, for a selected group of customers, or within a certain geographical area). That

means that the analyst will need to adapt experimental results to different empirical set-

tings in order to use them productively. Establishing whether, and under which conditions,

causal knowledge is applicable in varying contexts is a problem known as transportability

in the causal inference literature; while the social sciences commonly refer to it as external

validity (Bareinboim and Pearl, 2016). Solving this problem requires ex-ante causal assump-

tions about the data generating process, even if they are as trivial as assuming – as it is

commonly done – that experimental results can be extrapolated without explicitly taking

domain heterogeneity into account (Pearl and Bareinboim, 2014).

Moreover, in many practical settings, directly intervening on a variable of interest is not

feasible, because it would be costly, unethical and/or simply impractical to do so. In such

cases, the analyst might need to rely on surrogate experiments, which manipulate a target

variable only indirectly (Bareinboim and Pearl, 2012a).7 In a social media context, for ex-

ample, online advertisers who want to estimate the impact of a campaign cannot directly

control clients’ exposure to an ad (Gordon et al., 2019). Instead, however, consumers can be

randomly assigned to either a treatment group, who will be shown the ad once they log on

to the platform, or a control group, who will only see a neutral message. That way, adver-

tisers can effectively manipulate the ad exposure, but the assignment will remain imperfect

because many consumers will never visit the platform during the field phase of the experi-

ment. Thus, these customers are never exposed to the ad, even if they have been assigned

to the treatment group – a problem called “one-sided noncompliance” in the literature (Im-

bens and Rubin, 2015). This kind of surrogate experiments can be tremendously helpful in

learning about causal effects, but they require very specific assumptions in order to be infor-

mative (Bareinboim and Pearl, 2012a; Semadeni et al., 2014), another fact that highlights

the need for a model to obtain causal knowledge, even in situations where experiments are,

in principal, possible.
7In economics and management research, surrogate experiments are commonly referred to as instrumental

variables designs (Imbens and Angrist, 1994; Bascle, 2008).
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To summarize the preceding theoretical discussion, we argued that managers require

causal knowledge to generate and evaluate alternative courses of strategic actions. Inferring

causal effects thereby requires causal models that encode theoretical assumptions about

the data generating process. Standard machine learning approaches, however, refrain from

causal modeling, which makes them unsuitable for the task of causal inference. Thus, there

is a potential mismatch between the questions that are being pursued and the capacity of

the methods that are employed to answer them. The purpose of this study is to assess the

practical implications of this mismatch and to explore the use of causal inference methods

in contemporary organizations.

METHOD & ANALYSIS

Given the novelty of this research focus, we employed a mixed methods research design,

combining interviews with a survey instrument in an exploratory sequential design (Creswell

and Plano Clark, 2018), to derive a comprehensive understanding of the topic of causal

inference in contemporary organizations (Johnson et al., 2007; Creswell, 2014; Bettis et al.,

2014). Additionally, due to the association of the topic with ongoing discussions within the

data science and machine learning community, emergent blog posts, discussions and other

relevant online resources were followed up on and integrated throughout the data collection

and analysis phase.

Interviews were conducted with 15 data science practitioners to obtain a descriptive ac-

count and learn from individuals in key positions to comprehend the topic (Rowley, 2012;

Vaughan, 2013; Aguinis and Solarino, 2019). The research setting and sample were thus se-

lected for their suitability to reveal existing relationships and underlying phenomena. They

are not representative of some general population but rather chosen to facilitate the genera-

tion of new theoretical insights (Eisenhardt and Graebner, 2007). In that regard, we deemed

practitioners from the field of data science and machine learning particularly suitable to pro-

vide practical insights to the research questions for two reasons. First, as the topic of causal
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machine learning is based in the literatures of computer science and economics, it is reason-

able to assume that it diffuses into the industry primarily via data scientists and machine

learning engineers. Second, as this study explores the role of causal inference for organiza-

tional decision-making, the topic can best be investigated by drawing on the experience of

data scientists working on data-augmented strategies in today’s organizations. Interviewees

were recruited via email, professional social networking and development platforms (e.g.

Twitter, LinkedIn, Kaggle) and referrals within the community.

Table 1 provides profiles of all interview partners. Semi-structured interviews were held

from September 2019 to May 2020 (Appendix A.1). The interviews took 30 to 45 min-

utes each and were conducted via video conference. Before each interview, the participants

were informed about the research project, its procedures, and the confidentiality of their

responses (Rea and Parker, 2014). To facilitate analysis, the interviews were recorded and

transcribed. To extract a holistic and descriptive account of the meaning of the textual

material in light of the research questions, the transcripts were analyzed using qualitative

content analysis (Weber, 1990; Morris, 1994; Mayring, 2000). Primary content categories

were initially formulated based on the research focus and interview questions to determine

the levels of abstraction for the subsequent inductive category development. We then open

coded the material, extracting subcodes and developing additional categories from the data,

until theoretical saturation was reached. The final coding frame (Appendix A.2) consists of

eleven main categories, each with their own subcategories formulated from the material.

Revealing important variables, clarifying relevant concepts, and establishing a common

terminology, the first eight interviews provided the basis to inductively develop the survey

instrument (Bryman, 2012; Creswell, 2014) (Appendix A.3), which was administered on-

line in parallel with the last seven interviews. Guided by the first interviews, the target

population of the survey was data scientists in organizations that emphasize big data and

machine learning in their business. The respondents were understood as representatives of

their fields and their organizations. Potential respondents were recruited and contacted in
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TABLE 1: Overview of interviews

ID Company Type Role Industry Country
CONSI IT & service integra-

tion consultancy
Data scientist Consulting GER

RETA1 Online fashion retail
company

Senior applied (data)
scientist

Retail & consumer
goods

GER

TECH1 Software company Research data scien-
tist

Technology, media,
telecommunications

USA

CONS2 Independent IT con-
sultant

consultant & software
engineer

Consulting GER

CONS3 IT Consulting Com-
pany

Data science consul-
tant

Consulting USA

MANU1 Automotive company Data scientist Industrial manufac-
turing

GER

TOUR1 Tech company in the
travel industry

Chief technology offi-
cer

Hospitality & tourism GER

TECH2 Tech company in con-
sumer products mar-
keting

Senior machine learn-
ing engineer

Technology, media,
telecommunications

USA

MANU2 Engineering technol-
ogy company

Senior vice president Industrial manufac-
turing

GER

TECH3 Ridesharing company Research data scien-
tist

Technology, media,
telecommunications

USA

CONS4 IT consulting com-
pany

Data science consul-
tant

Consulting GER

HEALTH1 Health care provider Research data scien-
tist

Health services ISR

TOUR2 Online booking com-
pany

Data scientist Hospitality & tourism GER

TECH4 BDA Software Com-
pany

Senior applied (data)
scientist

Technology, media,
telecommunications

USA

TECH5 Communication plat-
form

Data scientist & ma-
chine learning engi-
neer

Technology, media,
telecommunications

CAN
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the same way as interview partners. In total 342 responses were recorded, of which 108 were

discarded as respondents did not go beyond the first page of general questions.8 The major-

ity of respondents, 68.1%, who completed the survey are from the private sector. Including

32.6% of the respondents, the technology, media, and telecommunications sector is the most

represented in the sample, followed by the education, research, and public sector with 16.7%

and the financial service sector with 14.2%. Of the respondents, 62.3% are data and research

scientists. The size of the respondents’ organizations is relatively equally distributed, with

33.4% having 250 or fewer employees and 30.4% having 5000 or more employees. With

34.6%, a third of the organizations are less than 10 years old. Most organizations, 44.4%,

are from Europe, closely followed by North American firms with 40.6%. Detailed descriptive

statistics can be found in Appendix A.4. Analysis of the survey responses generally focuses

on descriptive figures to extend and validate findings from the semi-structured interviews.

RESULTS

Below, we present interview and survey findings in parallel to allow for the triangulation of

results across cases as well as methods. The derivation of findings from different interviews

is presented transparently (with codes in parentheses) and supplemented with quantitative

evidence from the primary survey data to provide validity and generalizability.9 Where ap-

propriate and conducive to the generation of theoretical insights, relevant online resources

reviewed during the research process are incorporated. It should be noted that the last seven

of the 15 interviews were performed in spring 2020, during the Covid–19 pandemic. While

this certainly needs to be considered an unexpected circumstance regarding the replicability

of this study (Aguinis and Solarino, 2019), we expect that the situation did not significantly

affect the insights generated. As responses were made retrospectively, based on past experi-

ences, the Covid-19 pandemic was almost certainly too recent at the time of the interviews
8This relatively large number of participants not responding to the main body of the survey is expected

to primarily consist of academics who were curious about the content of the study but had no real interest
in participating.

9Additional figures not provided in the text can be found in Appendix A.7
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to have had a significant impact on the interview and survey responses.

The types of questions firms address with their data science efforts

To obtain a more general understanding of the business problems practitioners are typically

presented with, and to investigate whether practical use cases indeed involve causal inference

components, we first explore the types of questions firms address with data science and ma-

chine learning. For 60% of the companies whose representatives we interviewed, especially of

those offering web-based products or software, data science and machine learning are integral

parts of their products (1.a.i), employed to ensure and optimize product functionality. This

includes recommendation systems, automated pricing algorithms, and, in the case of online

marketplaces and meta search services, price predictions. Accordingly, the survey responses

in Figure 3 indicate that respondents employ data science for product recommendations

(33%) and pricing (31%) on their platforms. Similarly, 33.3% of the interviewees (1.a.iv)

and 39% of the survey respondents specifically mention the application of data science and

machine learning to product development. Moreover, 53.3% of interviewees (1.a.ii) and 36%

of survey participants say that data science is applicable to optimizing business processes,

such as improving the response time to a customer request or the scheduling of flights by

airlines. Predictive maintenance is identified as a relevant area in the interviews (1.a.iii) and

confirmed by 21% of survey respondents. A frequent application of data science and machine

learning, according to 53.3% of interviewees (1.a.v) and 32% of survey respondents, is the

forecasting of sales as well as demand and other financial data. The survey results identify

customer service and advertising as important areas of application for 25% and 24% of the

sample, respectively. Overall, data science and machine learning are mentioned as impor-

tant inputs to managerial decision-making by providing information on business parameters

relevant to the particular decision situation (1.a.vi).

When asked about the relevance of data science for strategic decisions in particular, all

the interviewees confirmed its importance and provided practical business cases (1.b). As
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FIGURE 3: Use cases of data science applications in contemporaneous organizations
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TECH3 noted, one way data scientists contribute to the organizations is “to help people make

better decisions on a day-to-day basis. As leadership decides for instance what options to

invest in or what products to launch, data scientists help inform those decisions.” From the

practical examples offered by practitioners interviewed, five types of strategic applications

can be synthesized. Most importantly, 86.6% of interviewees mention applications of data

science that seek to understand the marketplace, including to segment the customer base, to

analyze revenue streams and customer churn, and to evaluate business metrics to optimize

for (1.b.ii). Other applications are in strategic planning, which includes market entry and

exit decision and business model innovation (1.b.iii); pricing and revenue scheme decisions

(1.b.iv); product development (1.b.v); and investment decisions (1.b.vi). In support of these

findings, 44% of survey respondents classify data science as highly important for strategic

decision-making in their organization.

A theme that emerged during the interviews was that applications of data science and

machine learning, and the business questions addressed, are to a large extent driven by the

particular methods data scientists have at their disposal. As TECH5 noted: ”It’s often

rather, that they [executives] are faced with a business problem and some data scientist

will come to them and present a toolkit to solve it.” However, the problems described by

the executives are generally too broadly defined to recommend concrete actions to data

scientists. ”It’s interesting, with data and machine learning in general what I have observed
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is that there is very little top–down, actually” (TECH5). Instead, analysts often resort

to technical solutions and methodological approaches they are interested in or experienced

with, and focus on effectively applying them within the broader parameters of the business

model. As CONS1 explained,”We now often first see a particular technology that we want

to use and later look for the right area of application.” – such as responding to a particular

problem described by an executive. The data analytical approach taken towards a particular

business problem or strategic management question is thus rarely decided by management,

but more commonly selected by the data scientists who have been asked to deal with it.

Our findings highlight the central role of data scientists in determining the types of analyses

the organization’s analytical capacities are directed at. Thus, the approaches to strategic

problems, and the solutions proposed for them, depend on, and are limited to, the methods

and capabilities available to the data scientists in the organization.

Awareness of the difference between correlational and causal knowledge

To assess how far knowledge of causality is diffused among practitioners in the industry, we

were interested in respondents’ awareness of the topic of causal inference in the context of

their work. All interviewees say that they know the conceptual difference between correlation

and causation, a finding reflected by survey respondents, 96.6% of whom indicate familiarity

with the distinction.10 When asked what they associate with the phrase ”correlation doesn’t

imply causation,” 60% of practitioners recognize the limitations of their predictive models in

determining causal mechanisms and the potential risk that actors in the broader organization

will interpret results of correlation-based analyses as causal relationships (2.a).

However, despite this conceptual understanding on the part of data scientists, the degree

of recognition of causal inference in their professional work varies greatly across practitioners.

At one end, three of the 15 interviewees say that causal inference is not at all considered in
10Results at this point are based purely on participants’ own responses. We do not explicitly test whether

the self-assessment of their understanding is correct, i.e. whether respondents are, in fact, able to distinguish
between correlation and causation.
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their projects (8.a.i). Two of these three interviewees (TECH4 and CONS3) work in firms

offering consulting services whose data science efforts are often restricted by their clients’

demands and decisions. The third interviewee is an executive (MANU2), who appears to be

inexperienced with the topic, a finding that seems to indicate that practitioners in manage-

ment positions – typically the decision-makers in organizations – do not always recognize the

applicability of causal inference in their daily work. With 60%, the majority of interviewees,

however, says that the understaning of causal inference is beginning to slowly diffuse in their

organization (8.a.ii) and 40% mention that they are new to the topic but very interested in

learning more (8.a.iii). Hence, overall, awareness of and interest in the topic of causal infer-

ence is growing in industry. Diffusion seems very much bottom-up (8.a.iv), driven by experts

among data scientists. As TECH3 said, “I think we rely on that small set of causal inference

experts to inject their expertise wherever they can, but it’s very unevenly distributed.” Simi-

larly, TRAV1 noted, “Together with one of our data scientists, I am the one who is currently

pushing this topic. We are missing that view.” And, finally, CONS3 explained, ”In particular

the data scientists are really aware of it [causal inference] and are following discussions and

developments.”

Importance of causal inference in business today

To explore more closely the use of causal methods in decision-making, we further examine

the importance and value that respondents attach to causal inference for practical business

applications – particularly strategic decision situations. Highlighting the relevance of causal

knowledge for their work (3), interviewees generally stress the importance of causal inference

for addressing a variety of questions in the business context (4). This finding is confirmed

by 47% of the survey respondents, who say that causal inference is important for their data

science projects. More generally, 87% of interviewees say that by identifying confounding

variables and causal effects, causal inference allows firms to obtain a more thorough and

robust model of their business environment (3.b). Causal knowledge thereby allows for more
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complete insights and understandings of the environment and wider applicability, general-

izability, and interpretability. CONS1 explained, ”The questions we deal with are generally

larger than a specific context or a concrete data set. If I want my models to work in different

scenarios, across data sets, I quickly arrive at such [causal inference] problems.”

Interviewees provided several examples of business problems where they saw the poten-

tial to apply causal inference to better understand the relevant causal forces at play in the

business environment (4.a) (see also Appendix A.6). TECH2 said, ”One area where we are

still interested in doing observational data science is in just fundamentally understanding

the causes of a redemption in the app and having a true causal model of that phenomenon.

That way we can apply interventions and ask questions like, ’What if we did X?’” Intervie-

wees say that in practice, causal inference is useful for deriving more robust predictions of

business metrics (4.b); increasing operational efficiency (4.c); solving particularly complex

problems that require a more fundamental, generally applicable model of reality (4.d); and

evaluating the performance of specific interventions such as product changes (4.e). TECH6

explained, ”Most of our experiments are about some feature change that we think will im-

prove the product. […] We just want to verify that it is an improvement and how much

of an improvement it is.” The majority of respondents speak of the applicability of causal

inference to managerial decision-making in general (3.c) and specific situations of strategic

choice about the long-term direction and scope of the firm such as product (roadmap) deci-

sions, investment decisions, pricing, and prioritizing business objectives (4.f). Stressing the

importance of causal inference for strategic decision situations in particular, TOUR1 stated,

”Especially as a start-up, we need to manage our resources wisely, which actually links back

to corporate strategy. […] That’s why understanding causes and bringing facts to the table

when making these prioritization decisions, is really a key success factor that we believe in.”

Nonetheless, despite this evidence, survey results reveal that on average, practitioners

still find pure prediction to be more common in their data science projects. Interviewees,

too, state that most machine learning algorithms in practice are still mainly correlation-
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based: ”At the moment, we are very often looking at correlations only, without investigating

very much.” (TOUR1). ”All the classical machine learning algorithms rely on statistical

correlation. They learn statistical correlations of input patterns. However, we know that this

is not the whole truth.” (CONS3) Linking back to the observation that the methods available

to data scientists often determine the types of questions that can be answered, the strict

predominance of correlational methods indicated by interviewees (2.b), implies that causal

questions are insufficiently answered or not addressed at all. Indeed, 73.3% of interviewees

realize that the mostly correlational approaches in their work miss causal relationships (2.c).

In practice, this observation is critical, as CONS4 noted:”What we see quite often is that

when you are asked to do a data science project, the questions that the client asks actually

can’t be answered with the machine learning model you just trained with them. […] My

educated guess would be that the majority of questions, in the end, are causal questions, but

the way we, as data scientists, have been trained to answer these questions is always in terms

of classical machine learning.” From a retailing point of view, RET1 said, that this means

that their organization ”might be optimizing for something that doesn’t really cause a change

in [customer] behavior.” Emphasizing the importance of raising and resolving this mismatch

in firms’ data scientific approaches to strategic decisions, CONS4 concluded, ”While we can

train machine learning to predict your outcome, it would be key to establish an understanding

that there is still a gap between machine learning models and decision-making.”

Diffusion of causal inference methods and techniques

To understand how contemporary organizations incorporate causal inference into their busi-

ness practice, we explore the different techniques employed by firms and the advantages

and disadvantages practitioners identify in that regard. Survey results in Figure 4 show

that practical causal inference techniques and approaches are unevenly distributed across

organizations. By far the most prominent causal inference technique employed by firms

today is experimentation (5.h). The majority, 73.3%, of interviewees and 63.5% of survey
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respondents indicate that they apply A/B tests, bandits, or reinforcement learning for causal

inference at their organization. In contrast, besides regression (66%), observational causal

inference techniques – those based on ex-post data analysis without active manipulation or

randomization – are less widespread. Those mentioned most often by interviewees and sur-

vey respondents respectively are difference-in-differences (33% (5.a), 38% ), matching (26.6%

(5.c), 38%) and instrumental variable estimation (20% (5.b), 32%). Distinguishing between

experimental and observational causal inference techniques, we can derive several findings

about the use of causal inference methods and techniques in contemporary organizations’

data science efforts.

FIGURE 4: Usage of causal inference methods in data science applications
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As implied above, experiments are the default causal inference technique for most data

science practitioners (5.h.i). The majority of participants says they regularly run a large

number of A/B tests to find answers to their business questions. As TECH5 stressed,”There’s

a lot of causal inference techniques that we aren’t using, that we really could be using here,

but the massive hammer that tech companies swing around when it comes to causal inference

is running experiments.” Especially members of firms with web-based products say they are

continuously conducting a large number of experiments (5.h.ii). TECH2 noted, ”For actual

causal inference in terms of impact, no matter what algorithm we develop, even if these

algorithms are developed off of non-experimental data, we always run an A/B test. Every

algorithm that we ever develop, will go through A/B testing in its final stage.” This finding,
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is well in line with recent discussions in the literature, demonstrating that awareness of the

relevance of experimental methods in the business domain is growing (Thomke, 2020; Bojinov

et al., 2020; King, 2020). The popularity of experiments in the business context appears to

come primarily from the fact that they are relatively easy to use, as TECH1 explained

”A/B tests have been around for much longer and they have much better understanding

and support within the broader organization. [...] In that sense, I think almost everyone

believes in the power of randomized experiments and they are increasingly becoming a part of

decision-making whenever they are possible.” Survey respondents confirm this observation,

indicating that ease of application and straightforward understanding – as they seemingly

do not require specific causal modeling – are the most important advantages of experiments.

However, while experiments appear to be the preferred choice to answer causal queries

in the business context, several drawbacks, including the A/B testing pitfalls identified by

Bojinov et al. (2020), render them impractical in many problem spaces. Of our interviewees,

73% mention difficulties concerning the practical applicability (6.a) of A/B tests, relating

to situations in which the business environment, the data availability, or the parameters of

interest are unsuitable for an experimental approach. Practitioners add that experiments

are often time-consuming, rendering them impractical for pressing business decisions; that

control and treatment cannot be sufficiently administered in certain situations (as it might

not be possible to exclude people from the treatment); and that the data that the experi-

ment can collect is not suitable for answering the business question. The practitioners we

interviewed explain further that experiments cannot be easily and safely be set up in envi-

ronments such as manufacturing and medical services; 40% of survey respondents say that

experiments are not possible at all in their domain. Additional ethical and legal concerns

about providing divergent products, services, and/or prices to different customers present

an important shortcoming to 27% of interviewees (6.a.i) and 36% of survey participants.

According to 40% of interviewees (6.b) and 47% of survey respondents, experiments lead to

inferior user experience for customers and high costs for the firm. Moreover, interviewees

29



identify particular technical shortcomings (6.c) that impair the reliability of the measured

effects; the lack of suitable outcome metrics appears to be the most significant of these,

as indicated by 51% of survey respondents. In other words, the outcomes of interest that

decision-makers would like to affect are often difficult to observe, requiring analysts to rely

on proxy metrics. In many settings, experiments are only able to measure a short-term met-

ric, while the metric of interest is long-term. As TECH3 noted, ”A lot of those tests don’t

quite answer the questions that we have. Some of our tests might only run for two weeks,

while we actually care about a long-term effect, like for instance six months, because that’s

the business-relevant estimand.”

Finally, 40% of interviewees and 41% of survey respondents mention external validity,

that is, the transportability of results to different circumstances, as a big concern (6.d).

In practice, this becomes relevant when experimental results obtained in one market (for

example, a geographic area) are supposed to be used in another. The generalizability and

applicability of experimental results, as well as the value of data collected, are thus lim-

ited within experimental approaches to causal inference. While our analysis shows that

experiments are valued for their ease of implementation and interpretation, external validity

presents an important obstacle. Considering, for instance, significant changes to a product,

previous experimental results might not hold anymore. As TECH2 explained, ”There, exter-

nal validity becomes a concern. When we run previous experimental data and build models off

of these experiments, we get concerned when the app drastically changes.” Interestingly, the

global Covid-19 pandemic during of the research phase provides another particularly vivid

example of the external validity problem, as TECH3 described: ”External validity has indeed

recently become a very important topic for us. With the Covid-19 pandemic, we are actually

worried that experimental results from today won’t extrapolate to the future, as the market-

places are quite different.” This finding is also reflected in broader discussions among data

scientists and machine learning engineers. The global pandemic has caused drastic changes

in the world, altering people’s behavior and consumption patterns. As a consequence, firms
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cannot know whether experimental results collected before the pandemic are still valid dur-

ing or after it (Microsoft, 2020). In the realm of experimental causal inference methods,

practitioners would have to rerun the experiment, as TECH2 confirmed, which can entail

substantial resource investments.

Given those drawbacks of experimental methods, and the advantages practitioners per-

ceive in respect to observational causal inference methods, such as difference-in-differences,

DAGs, or matching (Figure 4), some practitioners identify observational methods as relevant

alternatives or complements to experiments when the latter are not feasible (3.d). Indeed,

survey results reveal that respondents value observational causal inference methods for being

based on actual field data (64%), for their ease of implementation (55%), and for the high

external validity of their results (51%). TECH3 said, ”I think A/B tests tend to estimate the

policy-relevant estimand quite well for us when they work. So, they are the most desirable

method. However, we often don’t get the right answer from them, so we have to use some-

thing else. I do think having a system-wide causal understanding is something that we try to

achieve.”

Nonetheless, data scientists in industry identify particular obstacles to using observational

approaches. The biggest challenge appears to be the understandability and applicability of

observational approaches to practical business cases (7.b), as practitioners perceive them as

more complex than standard machine learning techniques and experiments. Interviewees re-

mark that their analysis requires numerous untestable assumptions which need to be based on

a good causal model of the business environment. Likewise, 51% of survey respondents view

available methods as being based on too many assumptions. As such models are derived

from expert domain knowledge, observational causal inference methods lack an objective

standard of model evaluation, increasing the complexity of applying such methods to prac-

tical business problems. ”Since we are not randomizing, we can never be sure that we have

not missed confounding variables,” TECH1 noted. Similarly, the survey results show that

observational causal inference methods are indeed seen as difficult to implement (34%) and
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explain (37%). Interviewees further state that analyses with observational methods entail

lengthy and expensive deployment efforts, making them impractical in fast-moving business

environments (7.a), a position confirmed by survey respondents, who find such methods to

be time-consuming (40%) and to require very particular skills (40%). Observational causal

inference methods are consequently not as readily employed for analysis, as “It is often not

easy to describe the direct benefit of causal inference.” (CONS1) to customers as well as

non-data-scientists in management. TECH1 stated, “Even if it’s valid, it’s much harder to

convince a businessperson based on such a complicated analysis.” From the interviews, it can

therefore be derived that more industry examples from different sectors and organizations

could decisively help with this lack of understanding and applicability of causal inference in

diverse business contexts. “We are really missing experience and especially practical exam-

ples illustrating how causal inference can be applied to different areas, not only drug testing

and the like,” TOUR1 stated. In fact, the diffusion of practical causal inference tools and

software libraries also appears to be in its infancy, as 34.5% of survey participants do not ap-

ply practical causal inference tools. As Table 2 suggests, most libraries were only published

in mid-2019, with three industrial open-source libraries leading in engagement on GitHub.

Similarly, 46.6% of interviewees (7.e) are either not aware of observational causal inference

methods, are unsure of their practical application, or are not using any external tools but de-

veloping their own. Meanwhile, expert users assert that the existing software has significant

shortcomings (7.d). Some of them find it not fully developed (7.d.iii). Some say that the

user experience is not interactive enough and is still too theoretical; that the tools provided

lack graphical ability to make the models more understandable or lack the abilitiy to provide

useres with comprehensive what-if scenarios (7.d.ii); or, generally, that the right, standard

tools (especially in Python) are not yet available (7.d.i). Survey results confirm that many

practitioners, although willing, perceive hurdles to adopting observational causal inference

methods: only 27% find existing tools and software suitable for their purposes.
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TABLE 2: Software libraries on causal inference (January 10, 2021, examples). Contribu-
tors and Stars refer to repository statistics at GitHub

Entity Library Release Source Con-
trib.

Stars Language

Microsoft DoWhy July 15, 2019 Public, GitHub 34 2,579 Python
Uber CausalML July 10, 2019 Public, GitHub 21 1,540 Python
Google Causal Impact August 2, 2014 Public, GitHub 7 1,209 R
Academic ggdag October 9, 2019 Public, CRAN 1 303 R
Academic dagitty August 26, 2016 Public, CRAN 5 129 R
IBM Causal Inference July 12, 2019 Public, GitHub 3 105 Python
Netflix XP Causal Models April 29, 2019 Private, Inhouse NA NA Python/R

What is the future of causal inference in industry?

As the theory and results presented up to this point suggest that causal inference is an

emerging topic among data scientists in industry, in the following, we focus on deriving a

future outlook of where the industry is moving towards concerning causal inference. While

the benefits of data science and machine learning, in general, are widely acknowledged across

respondents (9.b), especially in terms of their informative value for business intelligence and

their analytical capacity, many practitioners doubt their benefits in strategic decision-making

(9.a). TECH5 noted: “I worry that since it’s all correlation rather than causation, it’s unclear

to which extent we are making great decisions based on that. […] I would feel a lot better if

we could narrow it down to some sort of causality instead of just correlation.” Our survey

results show that while 78% of the practitioners feel positively about the impact of data

science on decision-making in their company, 22% are not sure or even disagree completely.

Yet the application of causal inference is seen to have the potential to overcome some of the

shortcomings of machine learning in strategic decision-making (9.c). “I think causal inference

[...] has the potential to improve decision-making, at least more than machine learning does,”

TECH1 said. CONS2 stated, “From my experience, I think very few people are questioning

the data generation process itself and the story behind the data and I think there is some

value to be generated.”
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Similarly, 83% of the practitioners we interviewed believe that moving to causal infer-

ence and making decisions on the basis of causal models could add considerable value to

decision-making in their organization. Accordingly, we document an overall willingness of

60% of interviewees and 45% (n=155) of survey respondents to invest in causal inference at

their organization. Interviewees thereby intend to adopt additional causal inference tech-

niques (10.b) and develop own, potentially open-source, solutions (10.c). Moreover, 40% of

interviewees (10.d) and 42% of survey respondents (Figure 5) want to train existing data

science employees more intensively in causal inference. “We try to level people up by teach-

ing and providing lots of best practices and examples.” (TECH3). Of the practitioners we

surveyed, 36% plan to expand their team’s capabilities by hiring suitable talent. In that

regard, TECH3 specified that such causal inference experts come “almost invariably from

economics.” (TECH3). Survey results indicate that, together with computer science and

statistics, economics is considered as one of the most important educational backgrounds of

employees for improving causal inference capabilities in organizations today – a finding that

reflects an ongoing trend in the tech sector to increasingly hire economists for data science

jobs due to their specific skill set (Athey and Luca, 2019).

FIGURE 5: Means of improving organizational causal inference skills and capabilities in
the future
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Generally, as evidence points to an emerging trend of increased recognition and appli-

cation of causal inference in organizations’ data science efforts, the study also reveals four
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challenges that still need to be overcome for this trend to fully unfold (8.b). First, industry

examples of practical causal inference applications are still largely missing for many business

sectors. Interviewees say that such industry leadership would help practitioners in adopting

causal inference methods by showing where and how to apply causal techniques specifically

to their business (8.b.iii). As TOUR1 explained, “Uber, for instance, has a behavioral data

science team, but it’s not so common and that’s why it’s hard for us to decide whether it is

worth investing in it.” Second, in light of the lack of awareness and of the unavailability of

applicable, standardized tools (8.b.iv), practical causal inference methods need to become

more accessible to practitioners. Only 27% of practitioners surveyed find existing causal in-

ference software packages fitting for their purposes, which renders applying causal inference

to business problems relatively expensive and time-consuming.

Third, identifying a lack of respective skills within their organizations (8.b.ii), respon-

dents reveal that a broader understanding of causal inference and its applicability is still

necessary, but at the same time difficult to achieve because of the complexity of the topic.

As TECH2 emphasized, “There still is a big educational gap, even with professionals in

higher-up positions.” This gap needs to be closed so that causal inference can be applied

more broadly to business decisions. Finally, interviewees stress the need to overcome impor-

tant structural challenges (8.b.i) in contemporary organizations that obstruct such broader

diffusion. These challenges include a lack of established processes, missing incentive struc-

tures, missing training, and the pressure on data scientists to deliver fast results in practical

business environments. Importantly, this last challenge restricts the data science approaches

that can be employed: “When you build models, people always ask for the end product. It’s

often really only about getting stuff out the door, even if it’s not right or even perfect, but

if its good enough and making some impact, you go with it” (TECH2). Given the finding

that the broader organization often lacks training and involvement in causal inference, this

top-down pressure on data scientists to deliver fast results implies that causal inference ap-

proaches are often not explored let alone exploited in approaching a business problem. ”We
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don’t currently have processes to get to the root cause driving a particular phenomenon and

that’s why we are interested in how we can establish this kind of thinking,” TOUR1 noted.

Ultimately, therefore, our results highlight the need for skill development, better integration

of methodological and business knowledge, and the establishment of suitable processes for

causal data science approaches to improve organizational decision-making.

DISCUSSION

The main research question addressed in this study is epistemological. Strategic and or-

ganizational decision-making requires choices between different courses of action (Simon,

1964), which in turn depends on causal knowledge to predict the likely outcomes of the

managerial initiatives under consideration. Due to ground-breaking technological progress

in the last decade, machine learning and artificial intelligence gave the potential to become

important inputs for optimized decision-making in modern organizations (Brynjolfsson and

McElheran, 2019). However, when learning about individual cause-and-effect relationships

is the goal, an adequate methodology is needed George et al. (2014, 2016). Recent advances

in the causal inference literature have shaped our understanding of the kind of knowledge

that can be obtained based on different types of data inputs (Pearl and Mackenzie, 2018;

Bareinboim et al., 2020; Hünermund and Bareinboim, 2019). In particular, it is now under-

stood that any data-scientific method necessarily adheres to an epistemological hierarchy –

called the ladder of causation – which stipulates that lower-layer, correlational information

almost always underdertermines information at higher, causal layers of the hierarchy. Under

certain circumstances it becomes possible to bridge these layers of the hierarchy and infer

causal relationships from passive observations alone. However, that requires the data analyst

to invoke untestable theoretical assumptions about the data generating process in form of

a causal model – a fact which was eloquently summarized by Cartwright (1989) with the

maxim: ”No causes in, no causes out”.

Every causal model needs to be based on theory. Causal models originate in an orga-
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nization’s accumulated knowledge and shared beliefs about its mode of value creation and

the business environment it is operating in. Decision-making, as long as it relies on accurate

predictions of cause-and-effect, can therefore never be purely data-driven. Information based

on passive observations of an unperturbed environment is rarely rich enough to provide in-

formation about strategic courses of action at a sufficient level of granularity. The need

for a causal model in order to interpret and contextualize empirical patterns also does not

disappear when the decision-maker can directly intervene in the environment she is observ-

ing, such as through A/B tests or reinforcement learning algorithms (Forney et al., 2017).

The problem of transportability (or external validity) remains if experimental results are to

be used in contexts (e.g., temporal or geographical) that differ even slightly from the ones

they have been obtained in. Solving this problem requires bringing in ex-ante theoretical

knowledge that is not yet already in the data themselves.

The most commonly used machine learning tools today refrain from making explicit as-

sumptions about the data generating process and are thus unsuitable for the task of causal

inference (Pearl, 2019; Mullainathan and Spiess, 2017). Traditionally, their objective is to

maximize out-of-sample fit in a hold-out sample, which seemingly provides an objective

standard of evaluation. Causal inference methods, by contrast, with their requirement to

incorporate expert domain knowledge, are perceived to be more elusive. Different causal

assumptions might lead to substantially different conclusions, which adds a layer of subjec-

tivity to the analysis. As one of our interview partners said: ”The biggest challenge [with

causal inference] is that you don’t believe the results. Unlike with predictive projects it’s

very hard to validate your results. [...] That’s the primary issue.” At the same time, there

is a growing recognition among data science practitioners that there is no way around this

challenge. In the words of another respondent: ”We often use predictive models for making

decisions. However, that is increasingly not the right thing to do, which is a conclusion that

not just our organization, but many organizations are reaching.”

Our empirical analysis documents a shift in the data science and machine learning com-
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munity as it starts to recognize the importance of causal inference for practical business

decision-making. Our interview partners indicate a rising frustration with standard meth-

ods, as their correlational approach is increasingly perceived to be poorly aligned with orga-

nizational goals. This development is still at its beginning, however, and knowledge about

causal inference methods needs to be shared more widely outside of a relatively small group

of specialists. Our empirical findings indicate that most respondents plan to invest more into

causal inference capabilities. Main channels thereby constitute training measures as well as

the hiring of new employees with educational backgrounds from statistics, computer science,

and economics, who can contribute the required methodological skills to the organization

(Athey and Luca, 2019).

Several of our interview partners further expressed their opinion that moving away from

a purely correlation-based framework will be a major trend in the data science community

in the next few years. Examples of causal inference initiatives in major tech firms illus-

trate where the industry is heading. The video streaming platform Netflix employs causal

inference methods in its recommendation systems (Raimond, 2018) and rigorously runs ex-

periments for any product change considered before it becomes a default component in the

user experience (Urban et al., 2016). Likewise, the online lodging marketplace Airbnb utilizes

various experimentation techniques to test product changes and continuously learn from de-

velopments in the market place (de Luna, 2018). The American ride-hailing company Uber

is dedicating an increasing amount of its resources to implementing causal inference ap-

proaches as a means to improve their user experience (Harinen and Li, 2019). And the tech

giant Google is using causal inference to assess how effective online advertising campaigns

are in influencing search-related site visits (Brodersen et al., 2015; Varian, 2016).

Our discussion of the fundamental challenge of causal inference corroborates and con-

tributes to recent findings from the literature on the theory-based view of the firm (Felin and

Zenger, 2009, 2017; Felin et al., 2020a,b). Accurate predictions of the outcomes of future

actions, instrumental for effective organizational decision-making and strategic foresight, re-
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quires managers to build theories. Simple data-driven approaches relying on readily observ-

able evidence and performance feedback in business experimentation alone are not sufficient

for developing value-creating strategies (Felin and Zenger, 2009). Theories allow managers

to put empirical findings into context, develop the necessary “cross-sight” for identifying un-

dervalued strategic resources, and imagine new courses of action based on scattered evidence

(Felin et al., 2020b). The importance of theories – ”abstract, causal representation[s] of the

world” – (Felin and Zenger, 2017, 262) as an input for causal learning underscores the truth

value of ”no causes in, no causes out” (Cartwright, 1989)

At the same time, within the theory-based view, the origins of viable theories within the

theory-based view, and their relations to empirical evidence and experimentation are topics

that have not yet been well researched (Felin et al., 2020a; Gavetti and Menon, 2016). The

literature on causal inference in the field of machine learning and AI clarifies the interplay

between theory and data for causal learning and offers a powerful inferential machine that

managers can use in order to gain strategic foresight.11 In particular, it demonstrates the kind

of theoretical assumptions that are necessary for bridging the layers of the ladder of causation

and establishing a mapping between correlation and causation (Pearl, 2019; Bareinboim

et al., 2020). As a guiding principle, this delineation becomes especially valuable when the

minimum level of assumptions required to obtain practically relevant causal knowledge can

be determined (Peters et al., 2017). Furthermore, the causal AI literature specifies what kind

of data needs to be collected and which business experiments have to be performed to inform

theory (Hünermund and Bareinboim, 2019). It offers remedies if data is imperfect due to

limited perception and selective observation (Bareinboim and Pearl, 2012b; Correa et al.,

2019). And it proposes tools for managers to transport insights between various contexts

(Pearl and Bareinboim, 2011; Bareinboim and Pearl, 2012c; Pearl and Bareinboim, 2014;

Lee et al., 2020), necessary for effective theorizing.
11For an overview and introduction into the causal inferential framework, the following resources are well

suited: Athey and Imbens (2017); Bareinboim and Pearl (2016); Hünermund and Bareinboim (2019); Pearl
(2009); Peters et al. (2017); Pearl and Mackenzie (2018); Pearl et al. (2016).
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The need for theoretical causal modeling to establish information transfer across the lay-

ers of the causal hierarchy underscores the importance of domain experts in integrating causal

inference into data science and constitutes a substantial opportunity for human-machine co-

operation. Indeed, the role of managers as domain experts is critical for leveraging existing

decision-making algorithms. As the bi-directionality of human and machine decisions poses

challenges to organizations employing decision-making algorithms (Shrestha et al., 2019),

the question arises of how human sensemaking and machine learning can work together to

improve the generation of insights from business analytics (Sharma et al., 2014). Highlight-

ing the process model of task input (data: sound, text, images, and numbers), task processes

(algorithms), and task outputs (solutions and decisions), von Krogh (2018) argues that hu-

man problem solvers need to engage in sensemaking and interpretation of the prediction

output offered by algorithms, to connect needs, problems, and alternative solutions. Simi-

larly, Athey (2018) sates that automated prediction algorithms cannot leave domain experts

out of the loop. Among scholars and practitioners, concerns remain about the identifiability

of causal effects, about the confounders measured in a particular setting, about selecting

the right outcome variables, and about deriving accurate strategies from (causal) relation-

ships. In light of these challenges, causal modeling could in fact play a crucial role in the

so-called ”automation-augmentation paradox” (Raisch and Krakowski, 2021) that artificial

intelligence poses to the management domain, and thus address concerns about the future

role of managers under machine intelligence (Balasubramanian et al., 2020; Ghosh et al.,

2020). Because of their characteristic that the crucial assumptions on which conclusions rest

need to be made explicit ex-ante, causal AI methods are also able to avoid the concerns about

explainability and potential fairness that come with the existing approaches to automated

decision-making (Shrestha et al., 2021; Zhang and Bareinboim, 2018).

Data has become a strategic resource (Hartmann and Henkel, 2020), and this study ar-

gues that causal inference might, therefore, emerge as an important organizational capability.

However, to fully develop it, top management – the originators of value-creating theories –
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and data scientists with their relevant technical expertise will need to work more closely

together than they currently do. The results of our interviews indicate that data analytics,

although appreciated for its general utility in business intelligence (Shrestha et al., 2021), is

not yet well integrated into the process of organizational strategy formulation. It seems that

top management often sees machine learning competencies as ”nice to have” but not essen-

tial for decision-making, while data scientists focus on implementation and methodological

aspects without leveraging the full potential of the contextual business knowledge that is

embedded in the wider organization. Effective cooperation is hampered by communication

barriers between the two groups of specialists who speak different languages and adopt dif-

ferent institutional logics (Dunn and Jones, 2010; Besharov and Smith, 2014). Thus, there

is a need for interdisciplinarily trained individuals who can span the boundary between the

two domains (Argote et al., 2003; Gittelman and Kogut, 2003). This growing demand for

combining deep business knowledge and strong data science skills is likely to affect busi-

ness school education, which needs to incorporate more training in machine learning and

causal inference methodology, including outside of dedicated business analytics programs,

to develop the kind of holistic competencies that are necessary for effective data-augmented

decision-making.
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A APPENDIX

A.1 Interview guide

1. What role do data science and machine learning play in your organization?
• What are typical questions you are trying to answer?
• Can you tell us a couple of examples (setting the stage for later is important

here)?
• Is data science also relevant for corporate strategy in your organization?

2. What do you associate with the phrase “correlation doesn’t imply causation”?
• How would you define causal inference?

3. Does causal inference play a big role in your data science projects?
• How do you make sure to model causal?
• How do you make sure not to model correlational?

4. What are typical causal questions you are trying to answer in your organization?
• Can you give examples of a typical project?
• What tools do you use in order to answer them?
• Is this relevant for corporate strategy too?

5. What are typical prediction problems you are dealing with?
• What tools do you use in order to answer them?
• What are the biggest challenges?
• How do you deal with uncertainty?

6. Which causal inference methods are currently known to you?
• What is your most used approach?
• Do you know about other approaches?
• What are the biggest shortcomings of current causal inference methods you see

in practice?
7. Do you have the perception that there are different methodological camps when it

comes to causal inference?
• Rubin / Imbens / Athey versus Bareinboim / Pearl?

8. Which software tools and environments do you work with?
• Software?
• Which libraries are you using / planning to use for causal inference?
• How did you take notice of these software solutions?
• Are existing tools / libraries suitable for your purposes?
• Do you plan to contribute own open-source solutions?

9. Do you run experiments (A/B testing, reinforcement learning, etc.)?
• In which domains do you use experiments?
• What are the shortcomings of experiments, in your opinion?
• If you face the choice between experiments and observational data analysis, how

do you decide which method to use?
• How do you make sure that experimental results remain valid also in other con-

texts? External validity?
10. Does your organization currently hire data scientists? What skills are you looking for

in particular?
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• Which majors (CS, econ, math, etc.) do you mostly hire for data science jobs?
• How is your team composed?
• Is everyone on the team aware of the difference between causality and correlation?
• Do you plan to invest more into your causal inference capabilities in the future?

11. Do you have the feeling that machine learning improves human decision-making in
your organization?

• What about causal ML in particular?
12. Which question do you think we should have asked but haven’t in this interview?
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A.2 Coding frame
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ID Subcode Definition Freq.
1 Data science efforts 15
1.a Data science application Areas of application and problems addressed with

firms data science efforts in general.
15

1.a.i Product functionality / improve-
ments

Machine learning is part of the product and thus data
science is employed to ensure functionality and im-
prove the product. (e.g. recommendation engines;
pricing algorithms)

9

1.a.ii Process optimization 8
1.a.iii Predictive maintenance 2
1.a.iv Product development Identifying and testing product and feature innova-

tions (incl. ad systems).
5

1.a.v Forecasting Forecasting of business (decision) relevant parame-
ters.

8

1.a.vi Decision making Provision of relevant data for decision making in gen-
eral.

7

1.b Data science & strategic ques-
tions

15

1.b.i Important Data and / or data driven decision making is men-
tioned to be important to corporate strategy / strate-
gic decisions.

8

1.b.ii Monitor/ understand market-
place

Data science is employed to monitor and understand
the market place e.g. segment customers; identify
high from low value customers; monitor & evaluate
KPIs, customer churn or revenue streams.

13

1.b.iii Strategic planning Decisions concerned with strategic planning such as
market entry and exit, market scoping, business
model innovation.

6

1.b.iv Pricing & revenue scheme Inform and optimize (potentially automate) pricing. 5
1.b.v Product decisions Inform decisions on which products to launch; in

which feature innovations to invest into; designing a
product roadmap.

6

1.b.vi Investment decisions Inform decision on (a) financial investment and (b)
time & (human) resource investment.

7

2 Difference correlation &
causation

Meaning of the phrase ”correlation does not
imply causation”.

14

2.a Awareness Awareness that correlational approaches used provide
only limited insights as they do not reveal causal rela-
tionships and thus ought not be interpreted as such.

9

2.b Dominance correlation Correlation is dominant in data science efforts. 9
2.c Miss causal effect Practitioners say that correlational approaches they

employ miss causal effects and so results do not rep-
resent the whole truth.

11
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ID Subcode Definition Freq.
3 Relevance causal inference Relevance of causal inference in practitioners’

work environment.
14

3.a Social relevance Relevance of causal inference for society at large (under-
standing organization as economic actor in society and
considering effect of actions).

2

3.b Model of environment Causal inference (tools) allow firms to obtain a more
complete, robust and generalizable model of the respec-
tive business environment by identifying important con-
founding variables and causal effects.

13

3.c Decision making Causal tools are relevant for making important (high
investment, high value-creating, high risk, limited re-
sources) business decisions by providing important de-
cision making aid: identify spurious correlation; derive
action alternatives; estimate effect of interventions and
evaluate strategic action alternatives.

10

3.d Experiment alternative Firms recognize and employ causal tools as alternatives
for experimental methods (when those are not feasible).

6

4 Causal questions and prob-
lems

Causal questions and problems that arise in prac-
titioner’s work.

15

4.a Model business environment Employ causal inference to model the business environ-
ment to understand the drivers of observed phenomena
(identify variables of interest) in the business environ-
ment.

11

4.b (Robust) Forecasting Employ causal inference to make more robust (long run)
predictions of diverse metrics (incl. predictive mainte-
nance).

5

4.c Process optimization Employ causal inference to increase operational effi-
ciency (reduce response time; make tools easier to use;
develop / improve standard procedures for high value
leads; error analysis).

4

4.d Address complex problems Employ causal inference to address particularly complex
problems in the respective business context.

6

4.e Performance evaluation Employ causal inference to evaluate performance of spe-
cific interventions (often product changes, new features)
with regards to relevant business metrics and check if
the intervention has the desired outcome in the business
environment.

8

4.f Inform strategic choices Employ causal inference to inform strategic decisions:
product feature decision; pricing; investment decisions;
inventory/ product choices; KPI selection.

11
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ID Subcode Definition Freq.
5 Causal methods and tools 12
5.a Difference-in-differences 5
5.b Instrumental variable 3
5.c Matching 4
5.d Regression discontinuity 4
5.e Directed acyclic graphs (DAGs) 3
5.f None 2
5.g Internally built tools 5
5.h Experiments 11
5.h.i Default Experiments are the default causal inference method. 6
5.h.ii Multiple & continuous Organization runs multiple and continuous experi-

ments.
5

5.i Generalizing / test validity Run multiple tests on the same data set, randomize
treatment and control group to validate results and
check whether they generalize.

2

5.j Causal segmentation methods 1
5.k Inverse probability weighting 1
5.l Covariate adjustment 1
5.m Synthetic control methods 1
5.n Time split design 1
5.o Knowledge graphs 1
6 Shortcomings experiments Shortcomings of experimental approaches iden-

tified in practice.
12

6.a Practical application Experiments are unpractical in the business environ-
ment; with data available or parameters of interest.

11

6.a.i Social / legal reasons Experiments cannot be run for social or legal reasons:
discriminating customer groups in an A/B test; charg-
ing different prices for the same product; unethical
experiments.

3

6.b Costs Experiments entail rel. high costs: profits forgone;
inferior user experience (i.e. customer loss).

6

6.c Technical shortcomings Experiments have several technical shortcomings:
non-stationarity; unsuitable proxy for outcome met-
ric; the risk of self selecting into experiments that are
feasible/easier; biased control group; novelty effect.

7

6.d External validity Experiments have low/no external validity i.e. limited
transportability of results to different circumstances:
seasonality, different markets (e.g. countries), differ-
ent customer groups, drastic product changes.

6
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ID Subcode Definition Freq.
7 Shortcomings observational

causal methods
Shortcomings of observational causal inference
methods identified.

12

7. Practicality Observational causal inference methods are seen as
impractical due to time and cost it takes to run them,
develop the expertise for them or deploy packages in
own infrastructure.

7

7.b Understandability & applicabil-
ity

Observational causal inference methods are rela-
tively complex (compared to standard statistical tech-
niques) as they require numerous untestable assump-
tions, thus their applicability is not clear and methods
and results are difficult to understand.

11

7.c Technical shortcomings Technical shortcomings of current observational
causal inference tools.

6

7.d Software shortcomings Shortcomings of observational causal inference meth-
ods in terms of the software available.

8

7.d.i Availability The right tools (in the right environments) are not
available.

4

7.d.ii Usability Software and user experience lacks usability and fea-
tures that allow more user friendly application.

3

7.d.iii Maturity Observational causal inference methods are underde-
veloped.

3

7.e Diffusion Practitioners are not aware of methods; their prac-
tical applicability and means to use tools or are not
using any external models or tools but develop their
own.

7

8 Diffusion of causal inference Diffusion of causal inference (as a topic and
corresponding techniques).

0

8.a In organization Diffusion of causal inference within organizations. 15
8.a.i Not relevant Causal inference is not relevant in practitioners’ or-

ganizations.
3

8.a.ii Beginning Discussion about and application of causal inference
is only at the beginning and slowly diffusing into the
wider organization.

9

8.a.iii Interested in learning more Participants are fairly new to the topic but interested
in learning more.

8

8.a.iv Bottom-up The diffusion of causal inference is bottom up in or-
ganizations, meaning that mainly data scientists; ma-
chine learning experts & researchers are investigating
and pushing the topic.

10

8.a.v Methodological debate Participants report on the methodological debate re-
garding causal inference in their organization. (Rubin
versus Pearl)

5
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ID Subcode Definition Freq.
8.b Challenges Challenges to diffusion and more wide-scale adoption

of the causal discussion and (observational) causal
inference techniques.

12

8.b.i Structural Structural challenges to wider diffusion e.g. the lack
of established processes; missing experts/ knowl-
edge; no demand (from client side); missing incentive
structures; missing education in universities

9

8.b.ii Educational gap Educational/ knowledge gap w.r.t. causal inference,
within the industry, the organization and even data
science community.

10

8.b.iii Missing examples Missing practical examples for business problems/in-
dustries to illustrate where and how to apply causal
techniques.

4

8.b.iv Accessibility Lack of availability and awareness of applicable
methods and tools.

6

8.c In Industry Diffusion of causal inference in the business world
more generally.

9

8.c.i Not diffused in industry 7
8.c.ii Beginning to diffuse 5
9 Strategic decisions How data science and machine learning affect

strategic decision making in organizations.
15

9.a Doubts Doubts about whether machine learning helps to
make better decisions.

9

9.a.i Context In specific contexts machine learning is not (per-
ceived as) helpful to decision making or complicates
the business decision and justification.

5

9.a.ii Window-dressing Machine learning is perceived as a means to justify
predetermined managerial decisions.

2

9.b Improve/ facilitate decisions Data science and machine learning facilitate or even
improve strategic decision making.

14

9.b.i Informative value Data science improves decision making by preparing,
visualising and analysing data to enable humans to
make decisions.

7

9.b.ii Smarter products Machine learning affects corporate strategy by mak-
ing products smarter.

3

9.b.iii Analytical performance Machine learning improves decision making by pro-
viding advanced analytical capacities.

6

9.c Causal inference & decision mak-
ing

Causal inference in particular improves/has the
power to improve strategic decision making.

8

10 Causal inference invest-
ments

Plans to invest more into firms’ causal infer-
ence capabilities in the future.

5

10.a Not decided Not (yet) determined on investing into causal infer-
ence in the future.

3

10.b Adopt causal methods/ tools Adopting causal methods and tools currently not ap-
plied.

4

10.c Develop (open-source) solutions 5
10.d Training Train incoming talent and existing employees in

causal inference.
6

10.e Hiring Hire suitable talent (by educational background) 8
10.e.i Social sciences 5
10.e.ii Mathematics 1
10.e.iii Computer sciences 3
10.e.iv Statistics 2
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ID Subcode Definition Freq.
11 Technology Libraries and software environments used by

practitioners.
11

11.a Software environments 11
Apache Airflow 1
Apache Hive 3
Amazon SageMaker 1
BigQuery 1
DAGitty 1
Google Cloud 1
Google Docs/Sheets 2
Hadoop 2
Java 1
Julia 1
Jupyter Notebook 4
Kafka 1
Mode 1
Presto 2
Python 9
R 7
Scala 1
Spark 3
SQL 6
Stan 1
Tableau 1

11.b Libraries & packages 8
Causal Forests 1
DoWhy 3
EconML 2
Matchit 1
Pandas 2
PySpark 2
PyTorch 1
scikit-learn 4
Sparkml 1
TensorFlow 2
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A.3 Survey questionnaire

Dear participant,
Thank you for taking the time to respond to this research questionnaire! The survey will
take about 10 minutes to complete.

The aim of this research: We are interested in the role causal inference plays in a business
context, the types of questions practitioners attempt to answer with their data-science ef-
forts, and what kind of tools they apply to inform important business decisions.

Data use: The information provided by you will be treated strictly confidential. As partici-
pants in this questionnaire you will have access to the final results (scientific paper, executive
summary). The results will be presented in statistical form and will not contain references
to individual cases.

Thank you for your support!

Consent
I understand the information given above and agree to participate in this study under these
terms.

Selection
Yes
No

General information

Q1: What is your current job affiliation?
Selection

Academic institution (university, publicly funded research institute, etc.)
Private sector
Both
Other (please specify)

Q2: What industry does your organization (primarily) operate in?
Selection

Energy, utilities and resources
Financial services
Health services
Hospitality & tourism
Industrial manufacturing
Pharma and life sciences
Public sector, education, and research
Real estate
Retail and consumer goods
Technology, media, and telecommunications
Other (please specify)
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Q3: What is your primary role in your organization?
Selection

Top-executive (CEO, CFO, COO)
Product manager
Research scientist
Data scientist
Software engineer
Machine learning engineer
Consultant
Other (please specify)

Q4: How large is your organization (in FTE)?
Selection

1–250 employees
251–500 employees
01–1,000 employees
1,001–5,000 employees
5,001–10,000 employees
10,000+ employees

Q5: How old is your organization?
Selection

<10 years
> 10 years

Q6: Where is your organization based?
Selection

North America
South / Latin America
Europe
Asia / Pacific
Middle East
Africa

Data science in your organization

Q7: How important is data science in your business?
Selection

Not at all important
Slightly important
Moderately important
Very important
Extremely important

Q8: What problems do you usually address with your data science efforts? (select all
applicable categories)
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Selection
Pricing
Sales forecasting
Product development
Advertising
Customer service
Process optimization
Human resource management
Logistics
Predictive maintenance
Product recommendations
Not applicable
Other (please specify)

Q9: How important is data science for strategic decision-making in your organization?
In the context of this survey, strategic decisions refer to management decisions that entail
a considerable resource commitment and significantly determine the long-term direction and
goals of an organization. Amongst others, resource investment, market or pricing decisions
would typically fall into this category.

Selection
Not at all important
Slightly important
Moderately important
Very important
Extremely important

Correlation versus causation

Q10: Do you know the difference between correlation and causation?
Selection

Yes
No
Not sure

Causal inference in data science

Q11: How important is causal inference in your data science projects?
In the context of this survey, causal inference methods refer to all statistical and data-
science methods that are suitable for uncovering a causal relationships between two (or more)
variables. They stand in contrast to pure prediction problems, which are solely based on the
correlation between two (or more) variables.

Selection
Not at all important
Slightly important
Moderately important
Very important
Extremely important

Q12: Do you find pure prediction or causal inference more important for your data science
projects?
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-5 slider item 5

Q13: To what extent do you agree with the following statement: “In our organization we
have the necessary skills and capabilities for causal inference”?

Selection
Strongly disagree
Somewhat disagree
Neither agree nor disagree
Somewhat agree
Strongly agree

Causal inference methods

Q14: Which of the following causal inference methods do you use in your organization?
(select all applicable categories)

Selection
Directed acyclic graphs (DAG)
Experiments (A/B testing, reinforcement learning)
Instrumental variable estimation
Matching
Regression
Regression discontinuity designst
Time series methods
Not applicable
Other (please specify)

Q15: Do you find observational or experimental causal inference methods more important
for your data science projects?
Observational methods = Based on ex-post observed data (quasi-experimental methods, DAGs,
causal modeling, etc.); Experimental methods = A/B testing, reinforcement learning, etc.

-5 slider item 5

Q16: How important are the following advantages of observational causal inference methods
for your data science projects?

Not at all
important

Slightly im-
portant

Moderately
important

Very impor-
tant

Extremely
important

Easy to implement
Relatively cheap
Large sample size possible
High external validity
Based on actual field data

Q17: How important are the following disadvantages of observational causal inference meth-
ods for your data science projects?
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Not at all
important

Slightly im-
portant

Moderately
important

Very im-
portant

Extremely
important

Require specific skills
Time-consuming
Require specific data sets
Difficult to explain
Based on too many assumptions
Difficult to implement

Q18: How important are the following advantages of experimental methods for your data
science projects?

Not at all im-
portant

Slightly im-
portant

Moderately
important

Very impor-
tant

Extremely
important

Easy to implement
Require few assumptions
Easy to interpret
Require no specific skills

Q19: How important are the following disadvantages of experimental methods for your data
science projects?

Not at all
important

Slightly
important

Mod-
erately
important

Very im-
portant

Ex-
tremely
important

Relatively costly
Lack of external validity
Ethical concerns regarding experiments
Lack of suitable outcome metrics
Not possible in our domain

Software tools and packages
Q20: Which software environments do you mainly use in your data science projects?

Selection
Python
R
SPSS
SAS
Julia
Stata
Matlab
Excel
Other (please specify)

Q21: Which causal inference tools / software libraries are you aware of?
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Selection
causaleffect (R)
Causal Impact (R)
CausalML (Python)
DAGitty (R)
DoWhy (Python)
EconML (Python)
ggdag (R)
pcalg (R)
Not applicable
Other (please specify)

Q22: How suitable do you find existing causal inference tools / software libraries for your
purposes?

Selection
Not at all suitable
Slightly suitable
Moderately suitable
Very suitable
Extremely suitable

The future of causal inference in your organization

Q23: Does your organization plan to invest in its causal inference skills and capabilities
in the future?

Selection
Yes
No
Not sure

Q24: If so, how does your organization plan to improve its causal inference skills and capa-
bilities?

Selection
Training of existing employees
Hiring of new employee
Investing in our software architecture
Cooperating with academic experts
Not applicable
Other (please specify)

Q25: How important are the following disciplines / educational backgrounds of employees
for improving the causal inference capabilities of your organization?

Not at all im-
portant

Slightly im-
portant

Moderately
important

Very impor-
tant

Extremely im-
portant

Computer science
Mathematics
Economics sets
Statistics
Social sciences
Natural sciences
Engineering
Psychology
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Data-driven decision-making

Q27: Do you think that data science is improving human decision making in your organiza-
tion?

Selection
Definitely not
Probably not
Might or might not
Probably yes
Definitely yes

Q28: To what extent do you agree with the following statement: “Causal inference methods
will become more important for data-driven decision making in the future”?

Selection
Strongly disagree
Somewhat disagree
Neither agree nor disagree
Somewhat agree
Strongly agree
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A.4 Descriptives
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TABLE 3: Characteristics of survey respondents (n = 234)

Frequency Proportion (excl. NA)
Job Affiliation
Academic institution 50 21.5%
Private sector 159 68.2%
Both 13 5.6%
Other 11 4.7%
NA 1
Industry
Energy, utilities and resources 13 5.6%
Financial services 33 14.1%
Health services 11 4.7%
Hospitality & tourism 3 1.3%
Industrial manufacturing 8 3.4%
Pharma and life sciences 6 2.6%
Public sector, education, and research 39 16.7%
Real estate 0 0.0%
Retail and consumer goods 23 9.8%
Technology, media, and telecommunications 76 32.5%
Other 22 9.4%
Role
Top executive 16 6.9%
Product manager 10 4.3%
Research scientist 57 24.5%
Data scientist 88 37.8%
Software engineer 11 4.7%
Machine learning engineer 13 5.6%
Consultant 13 5.6%
Other 25 10.7%
NA 1
Size
1–250 employees 78 33.5%
251–500 employees 20 8.6%
501–1,000 employees 18 7.7%
1,001–5,000 employees 46 19.7%
5,001–10,000 employees 19 8.2%
10,000+ employees 52 22.3%
NA 1
Age
<10 years 81 34.6%
>10 years 153 65.4%
Region
North America 95 40.6%
South / Latin America 10 4.3%
Europe 104 44.4%
Asia / Pacific 22 9.4%
Middle East 2 0.9%
Africa 1 0.4%
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A.5 Technical appendix

To address the research purpose of this study in sufficient depth and breadth, data collection,
analysis and interpretation followed a mixed methods design (Johnson et al., 2007; Creswell,
2014). As the topic is characterized in particular by its novelty and timeliness, the primary
purpose of this empirical approach is to obtain a comprehensive understanding and corrob-
oration of the topic. Thus, data collection and analysis encompassed three elements. First,
multiple interviews with elite informants were conducted to explore the topic qualitatively
and triangulate findings across cases. Second, following the exploratory sequential design
proposed by Creswell and Plano Clark (2018), a survey instrument was developed from the
interviews, to investigate the topic at a larger scale and test whether the qualitative results
generalize (Greene et al., 1989; Bryman, 2006). Additionally, acknowledging the association
of the topic with ongoing discussions within the data science and machine learning commu-
nity, emergent blog posts, discussions and other relevant online resources were followed up
on and integrated throughout the data collection and analysis phase. As this study intends
to serve both, academics and practitioners, this research design in particular is expected to
make the study accessible and useful to diverse stakeholder (Bazeley, 2008; Bryman, 2012;
Aguinis and Solarino, 2019).

In total 15 interviews with practitioners were conducted to obtain a descriptive account
and learn facts, experiences and understandings from individuals in key positions to com-
prehend the topic of interest (Rowley, 2012; Vaughan, 2013; Aguinis and Solarino, 2019).
The research setting was thus selected for its suitability to reveal existing relationships and
underlying phenomena. The interview sample and context are thereby not representative of
some general population, but rather chosen such that they facilitate the generation of new
theoretical insights (Eisenhardt and Graebner, 2007). To that regard, practitioners in the
field of data science and machine learning were deemed as particularly suitable to provide
practical insights to the research questions for two reasons. First, as the topic of causal
inference in machine learning is based in the computer science and economics literature, it
is reasonable to assume that it diffuses to the industry primarily via data scientists and ma-
chine learning engineers. Second, as this study is interested in the role of causal inference for
(strategic) decision making in organizations, the topic can best be investigated by drawing
on the experience of data scientists working on data-augmented strategies in today’s orga-
nizations. Interviewees were recruited via two channels. One, by means of public postings
with a call for participation on professional social networking and development platforms
(e.g. Twitter, LinkedIn, Kaggle). Two, via e-mail and referrals within the community. Po-
tential interview partners were provided with a short description of the research project. A
selection was then made such that the sample of respondents varied in terms of industries,
countries and size of companies. Table 1 provides profiles of the practitioners interviewed.
All participants were deemed as equally important to the research. Interviews were held in
one consecutive round from September 2019 to May 2020. All interviews were conducted
in English12, in the form of semi-structured interviews to maintain flexibility towards the
interview flow and encourage the interviewees to share experiences around the theme. To
that regard, a guide of twelve open-ended questions with one to four sub-questions each was

12With the exception of the interview with CONS1, which was conducted in German and subsequently
translated for the analysis.
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prepared, starting with general questions such as “What role do data science and machine
learning play in your organization?” and “Is data science also relevant for corporate strategy
in your organization?”, followed by questions related more specifically to causal inference.
Throughout the interviews, questions were selected such that they on the one hand facilitate
a detailed, flowing conversation, allowing the interviewees to speak relatively freely about
their knowledge and on the other hand, provide insights relevant to the research purpose.
The question guide was iteratively revised and updated during the first interviews (Bryman,
2012). The final version can be found in Appendix A.1. Interviews were scheduled to take
30 to 45 minutes each and were conducted via video conferencing tools such as Skype or
Zoom, which allowed to speak to interviewees at distinct locations and at the same time
removed potential interviewer bias (Bryman, 2012). Concerning research ethics, prior to the
interview, participants were informed about the research project, procedures and the confi-
dentiality of their responses (Rea and Parker, 2014). For means of analysis, the interviews
were recorded, anonymized and transcribed.

To study the experiences and understandings held by informants within the exploratory
research design adopted, qualitative content analysis was used to extract a holistic and de-
scriptive account of the meaning of the textual material with respect to the research topic
(Weber, 1990; Morris, 1994; Mayring, 2000). As an established method for qualitative anal-
ysis, it achieves a systematic description of the material by reducing it into identified content
categories that describe the phenomenon of interest. The recording unit was identified as
words (when applicable to the code), sentences and paragraphs. Main content categories
were initially derived from the research and interview questions, determining the levels of
abstraction for the inductive codes formulated in the second round of coding. Categories
3 to 10 (of the final code system in Appendix A.2) were thus initially defined, providing a
criterion of selection. As a first step of reduction, the unit of analysis was established as
those textual passages (paragraphs and sentences) of the transcripts that were relevant to
these main categories (Guthrie et al., 2004; Cho and Lee, 2014). After retrieving the relevant
textual material, the first 8 interviews were coded with the pre-determined main categories.
Strauss and Corbin (1990) argue that when research questions are open and no hypotheses
are formulated, grounded theory methods can effectively be utilized to extract a descriptive
account from qualitative data. Therefore, the material was coded a second time using the
open coding approach from the grounded theory framework to extract codes emerging from
the data. The codes obtained from the first round of open coding were further grouped into
inductive categories, formulated out of the material. Those categories and codes were then
either subsumed to one of the main categories or formed a new category. On the basis of
these subcategories, the material was coded again, taking into consideration the remaining
7 interview transcripts until no new codes were added to the code system, suggesting theo-
retical saturation. This point of saturation was reached after two rounds of open coding 12
interviews. Finally, the entire material was coded with the defined code system. Through-
out the rounds of coding, the main categories were consistently revised on the basis of codes
emerging from the material, providing an iterative development and formative check of the
code system (Weber, 1990; Mayring, 2000). The final coding frame (Appendix A.2) consists
of eleven main categories each with its own subcategories that were inductively formulated
out of the material. Reliability of the code system was ensured through the involvement
of two researches in the process. Disagreements were discussed and resolved by conceptual
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clarification.
On the basis of the first 8 interviews, the survey instrument was developed and admin-

istered in parallel with the conduction of the second half of the interviews. This inductive
approach improves construct validity and the data obtained (Greene et al., 1989) and sig-
nificantly increases the probability that the survey is relevant to the research and capable of
providing meaningful insights (Creswell and Plano Clark, 2018). To that regard, the inter-
views in particular provided a clarification of relevant concepts and a common terminology
and revealed important variables and questions to be investigated with the survey (Bazeley,
2008; Bryman, 2012; Creswell, 2014). Hence, closed question responses, categories and scales
were derived from interview insights. A pre-test of the instrument was run with 3 of the for-
mer interviewees, instructed to pay special attention to the understandability and adequacy
of the survey with respect to the topic of interest. Feedback was incorporated to generate the
final instrument. The final questionnaire consisted of 7 parts with a total of 28 questions and
can be found in Appendix A.3. Multiple choice closed question responses were displayed in
random order to respondents. Deriving from the preceding interviews, the target population
of the survey was determined as all data scientists in organizations that emphasize big data
and machine learning in their business. The respondents were taken as representatives of
their field and their organization in particular. The survey was conducted as a web-based
survey. Potential respondents were identified and recruited via two means. One, from a
list of suitable organizations a random sample of 112 firms was contacted by email. Two,
professional contacts and referrals were contacted either directly by email or by a public
posting with a call for participation on professional social networking and development plat-
forms (e.g. Twitter, LinkedIn, Kaggle). At the beginning of the questionnaire respondents
were offered a summary report of the research project (Kriauciunas et al., 2011), which was
expected to be especially interesting to practitioners currently engaged with the topic in
their organization. In total 342 responses were recorded, from which 108 were discarded due
to non-response which includes respondents that only filled out the general information and
dropped out of the survey when questions became more specific regarding data science and
causal inference.
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A.6 Practical causal inference applications

TABLE 4: Interview excerpts

Model the business environment
TOUR1 ”what we really want to know is: Is the processing time really the cause of it (a sale) or

are there other variables that we don’t record?”
TECH1 ”One is the problem of customers churning out and you want to know why they are

churning out. The second one is more about understanding what causes revenue. You
may have any kind of product, which you have high dimensional data on, and some of the
data surely is important for understanding what causes an increase in revenue. Hence,
you want to figure out, using data science, which parts of the actions you are taking, or
characteristics of customers are actually leading to higher revenue or lower churn or any
of the business metrics that you may care about.”

RETA1 ”At the moment a big project we are working on is to consider all the variables we are
optimizing for and try to work out whether they are actually good variables to optimize
for. Good in terms of, if we can cause a customer to take these actions or go through
this journey, they will have a different relationship with our business and will become
qualitatively a better customer and thus spend more money. So, we are trying to identify
behaviors that are indicative of people leaving and identify what is causing this behavior.”

CONS1 On the topic of fuel efficiency, we have questions such as: What are the actual effects of
the individual components on fuel efficiency and how do I have to coordinate or exchange
them so that my fuel efficiency is as high as possible?

(Robust) Forecasting
TECH3 ”So, there’s these causal inference problems that involve taking a more limited amount

of randomization and trying to project what would happen in the case that everybody
got some kind of treatment for a longer time.”

TOUR1 ”When we get a lead, we are actually interested in how likely it is that this lead responds
positively to us when we send out an offer.”

RETA1 ”One project we are working on at the moment is linking our A/B testing infrastructures,
so we can get a short run metric like, for instance, revenue per user for different versions
of the website. (…) to predict what might happen over the next 1-2 years.”

Process optimization
TOUR1 ”It’s actually a process optimization step. The processing time in fact occurs when the

human has to go into our back-office tools and adjust this trip. For technical reasons,
these adjustments cannot be done on the website at the moment. In this case – and we
invest a lot in this – we are interested to see: How can we reduce the response time?
How can we make the tools easier to use? How can we invest in standard procedures for
these 20 % of the cases which drive 80 % of the value?”

MANU1 ”For example, I have a large typical 99% accuracy where my system works and I want to
analyze the 1% which I think is not typical in the observational data and I would want
to run a causal analysis how statistically important that factor is.”

Performance evaluation
TOUR2 ”Many things are difficult for us to test offline, because it will change what we show to

the user, so we don’t know if the change that we are going to do is going to cause a
positive impact.”
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TECH3 ”Then there’s also a lot of causal inference questions around what would happen if we
changed the way we ran the business in various ways that would be quite disruptive for
us to run tests with. (…) A good example of that would be our memberships program.
We can’t actually A/B test a memberships program, because once we launch it, we can’t
exclude people from participating. (…) However, it’s important for us to estimate what
happens when we launch it more broadly.”

TECH5 ”Most of our experiments are about some feature change that we think will improve the
product. So, we are not terribly worried about exposing people to it. We just want to
verify that it is an improvement and how much of an improvement it is.”

Inform strategic choices
CONS1 ”In pricing, questions surrounding the drivers behind certain variables are of interest.

More specifically, that means: Do the improvements that we see come from the pricing
strategy or are there forces outside your own market that create this effect, changing
everything structurally without you exactly knowing how and why?”

ONS4 ”“How should I address the individual user to maximize the click rate?”. I think most
questions really are about, how I should change my business process to achieve some
optimization goals. (…) Essentially you are asking, how you should change your status
quo. That is usually the question and for that you need causality.”

TOUR1 ”When we identify an actual correlation, we might decide to invest into this feature.
Given that as a small company, our resources are limited, we need to distribute our
efforts efficiently. If, for instance, we run two months of development with our team
to improve that feature and it turns out that it is not a causal relationship, that would
constitute a considerable loss of resources. That’s why understanding causes and bringing
facts to the table when making these prioritization decisions, is really a key success factor
that we believe in.”
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A.7 Additional survey results

FIGURE 6: (Q9) How important is data science for strategic decision making in your
organization?

30% 44%26%

100 50 0 50 100

Response Not at all important Slightly important Moderately important Very important Extremely important

Note:. For the percent numbers in likert scale graphs, responses are grouped into low, neutral and high

FIGURE 7: (Q13) To what extent do you agree with the following statement: “In our
organization we have the necessary skills and capabilities for causal inference”?

42% 46%11%

100 50 0 50 100

Response Strongly disagree Somewhat disagree Neither agree nor disagree Somewhat agree Strongly agree
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FIGURE 8: (Q16-19) How important are the following (dis)advantages of observational /
experimental methods for your data science projects?
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64%
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Q16: How important are the following advantages of observational causal inference methods for your data science projects?
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Q17: How important are the following disadvantages of observational causal inference methods for your data science projects?

16%

29%

21%

34%

67%

48%

45%

31%

17%

23%
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Q18: How important are the following advantages of experimental methods for your data science projects?

19%

27%

33%

34%

46%

51%

47%

41%

40%

36%

30%

26%

26%

26%

18%

Relatively costly

Lack of external validity

Ethical concerns

Lack suitable outcome metrics

Not possible in our domain

100 50 0 50 100

Response Not at all important Slightly important Moderately important Very important Extremely important

Q19: How important are the following disadvantages of experimental methods for your data science projects?

FIGURE 9: (Q21) Which causal inference tools / software are you aware of?
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FIGURE 10: (Q22) How suitable do you find existing causal inference tools / software
libraries for your purposes?

36% 27%37%

100 50 0 50 100

Response Not at all suitable Slightly suitable Moderately suitable Very suitable Extremely suitable
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FIGURE 11: (Q25) How important are the following disciplines / educational backgrounds
of employees for improving the causal inference capabilities of your organization?
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FIGURE 12: (Q27) Do you think that data science is improving human decision making
in your organization?

5% 78%17%

100 50 0 50 100

Response Definitely not Probably not Might or might not Probably yes Definitely yes

FIGURE 13: (Q28) To what extent do you agree or disagree with the following statement:
“Causal inference methods will become more important for data-driven decision making in
the future”?

7% 83%10%

100 50 0 50 100

Response Strongly disagree Somewhat disagree Neither agree nor disagree Somewhat agree Strongly agree
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